

US009248127B2

(12) United States Patent

Perman et al.

(10) Patent No.: US 9,248,127 B2

(45) **Date of Patent:** Feb. 2, 2016

(54) AQUEOUS GEL FORMULATIONS CONTAINING IMMUNE RESPONSE MODIFIERS

(75) Inventors: Christopher S. Perman, Saint Paul, MN

(US); Raymond D. Skwierczynski, Saint Paul, MN (US); David Q. Ma, Saint Paul, MN (US); John C. Hedenstrom, Saint Paul, MN (US)

(73) Assignee: 3M INNOVATIVE PROPERTIES

COMPANY, Saint Paul, MN (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1976 days.

(21) Appl. No.: 11/883,665

(22) PCT Filed: Feb. 3, 2006

(86) PCT No.: **PCT/US2006/004201**

§ 371 (c)(1),

(2), (4) Date: Aug. 19, 2008

(87) PCT Pub. No.: WO2006/084251

PCT Pub. Date: Aug. 10, 2006

(65) Prior Publication Data

US 2009/0163532 A1 Jun. 25, 2009

Related U.S. Application Data

- (60) Provisional application No. 60/650,030, filed on Feb. 4, 2005.
- (51) **Int. Cl.** A01N 43/42 (2006.01)A61K 31/44 (2006.01)A01N 43/50 (2006.01)A61K 31/415 (2006.01)A61K 31/4745 (2006.01)A61K 9/00 (2006.01)A61K 47/10 (2006.01)A61K 47/12 (2006.01)A61K 47/32 (2006.01)A61K 47/36 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

3,314,941	A	4/1967	Lundquist, Jr. et al.
3,450,693	A	6/1969	Suzuki et al.
3,670,086	A	6/1972	Pryor et al.
3,692,907	A	9/1972	Fleming et al.
3,891,660	A	6/1975	Denzel et al.

3,899,508 A	8/1975	Wikel
3,917,624 A	11/1975	Abu El-Haj et al.
4,006,237 A	2/1977	Buckle et al.
4,053,588 A	10/1977	Konig et al.
4,381,344 A	4/1983	Rideout et al.
4,552,874 A	11/1985	Mardin et al.
4,563,525 A	1/1986	Campbell, Jr.
4,593,821 A	6/1986	Brule
4,668,686 A	5/1987	Meanwell et al.
4,689,338 A	8/1987	Gerster
4,690,930 A	9/1987	Takada et al.
4,698,346 A	10/1987	Musser et al.
4,698,348 A	10/1987	Gerster
4,753,951 A	6/1988	Takada et al.
4,758,574 A	7/1988	Robertson et al.
4,774,339 A	9/1988	Haugland et al.
4,775,674 A	10/1988	Meanwell et al.
4,800,206 A	1/1989	Alig et al.
4,826,830 A	5/1989	Han et al.
4,837,378 A	6/1989	Borgman et al.
	(Con	tinued)

FOREIGN PATENT DOCUMENTS

AU 2004220534 A1 9/2004 AU 2004229478 A1 10/2004 (Continued) OTHER PUBLICATIONS

Supplementary European Search Report for EP 06720400.8 mailed Mar. $30,\,2010$

Chollet et al., Development of a Topically Active Imiquimod Formulation. Pharma Dev Technol. 1999;4(1):35-43.

Li et al., Solubility behavior of imiquimod in alkanoic acids. Pharmaceutical Research. 1997 American Association of Pharmaceutical Scientists Annual Meeting. Poster Presentation, Boston, MA, Nov. 2-6, 1997;S475:Abstract 3029.

Sugisaka et al., The Physicochemical properties of imiquimod, the first imidazoquinoline immune response modifier. Pharmaceutical Research. 1997 American Association of Pharmaceutical Scientists Annual Meeting. Poster Presentation, Boston, MA, Nov. 2-6, 1997;S475:Abstract 3030.

Bege et al., J. Pharm. Sciences, 66, 1-19 (1977).

International Search Report and Written Opinion for PCT/US2006/004201 mailed Jan. 30, 2007.

International Preliminary Report on Patentability for PCT/US2006/ $004201\ mailed\ Aug.\ 16,\ 2007.$.

(Continued)

Primary Examiner — Layla Soroush (74) Attorney, Agent, or Firm — 3M Innovative Properties Company; Eric E. Silverman

(57) ABSTRACT

Aqueous gel formulations, including an immune response modifier (IRM), such as those chosen from imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, 1,2-bridged imidazoquinoline amines, imidazonaphthyridine amines, imidazotetrahydronaphthyridine amines, oxazoloquinoline amines, thiazoloquinoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines, pyrazolopyridine amines, pyrazoloquinoline amines, tetrahydropyrazoloquinoline amines, pyrazolonaphthyridine amines, tetrahydropyrazolonaphthyridine amines, and 1H-imidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines, are provided. Methods of use and kits are also provided.

18 Claims, No Drawings

US 9,248,127 B2Page 2

(56)			Referen	ces Cited		6,194,388			Krieg et al.
	IJ	S. F	PATENT	DOCUMENTS		6,194,425 6,200,592	B1	3/2001	Gerster et al. Tomai et al.
	Ŭ			DOCOMENTO		6,207,646	B1		Krieg et al.
	,880,779 A		11/1989			6,239,116 6,245,776		5/2001 6/2001	Krieg et al. Skwierczynski et al.
	,904,669 A ,929,624 A			Knoll et al. Gerster et al.		6,294,271		9/2001	
4	,988,714 A		1/1991	Alig et al.		6,303,347		10/2001	Johnson et al.
	,988,815 A ,037,986 A		1/1991 8/1991	Andre et al.		6,309,623 6,315,985	B1		Weers et al. Wu et al.
	,037,980 A ,175,296 A		12/1992			6,323,200	B1	11/2001	Gerster et al.
5	,187,288 A		2/1993	Kang et al.		6,329,381 6,331,539			Kurimoto et al. Crooks et al.
	,225,183 A ,238,944 A			Purewal et al. Wick et al.		6,339,068			Krieg et al.
5	,248,782 A	L.		Haugland et al.		6,348,462	В1	2/2002	Gerster et al.
	,266,575 A			Gerster et al.		6,365,166 6,376,501			Beaurline et al. Isobe et al.
	,268,376 A ,274,113 A		12/1993	Gester Kang et al.		6,376,669			Rice et al.
5	,346,905 A		9/1994	Gerster		6,387,383			Dow et al.
	,352,680 A			Portoghese et al.		6,387,938 6,406,705			Mizuguchi et al. Davis et al.
	,352,784 A ,367,076 A		11/1994	Nikolaides et al. Gerster		6,426,334			Agrawal et al.
5	,376,501 A		12/1994	Marien et al.		6,440,992			Gerster et al. James et al.
	,378,848 A ,389,640 A			Takada et al. Gerster et al.		6,451,485 6,451,810			Coleman et al.
	,395,937 A			Nikolaides et al.		6,465,654	B2		Gerster et al.
	,444,065 A			Nikolaides et al.		6,476,000 6,486,168			Agrawal Skwierczynski et al.
	,446,153 A ,446,160 A			Lindstrom et al. Stucky et al.		6,486,186			Fowler et al.
	,482,936 A			Lindstrom et al.		6,511,485			Hirt et al.
	,494,916 A			Lindstrom et al.		6,514,985 6,518,239			Gerster et al. Kuo et al.
	,500,228 A ,525,612 A		3/1996 6/1996	Lawter et al. Gerster		6,518,265			Kato et al.
5	,530,114 A			Bennett et al.		6,518,280			Gerster et al.
	,569,450 A			Duan et al.		6,525,028 6,525,064		2/2003 2/2003	Johnson et al. Dellaria et al.
	,571,819 A ,578,727 A			Sabb et al. Andre et al.		6,541,485			Crooks et al.
5	,585,612 A		12/1996	Harp, Jr.		6,545,016			Dellaria et al.
5	,602,256 A ,605,899 A			Andr e et al. Gerster et al.		6,545,017 6,558,951		5/2003	Dellaria et al. Tomai et al.
	,612,377 A			Crooks et al.		6,573,273	В1	6/2003	Crooks et al.
5	,627,281 A			Nikolaides et al.		6,582,957 6,610,319		6/2003 8/2003	Turner, Jr. et al. Tomai et al.
	,644,063 A ,648,516 A			Lindstrom et al. Nikolaides et al.		6,627,638		9/2003	
	,693,811 A			Lindstrom		6,627,639		9/2003	Stack et al.
	,714,608 A		2/1998			6,627,640 6,630,588			Gerster et al. Rice et al.
	,731,193 A ,736,553 A			Mori et al. Wick et al.		6,638,944	B2	10/2003	
5	,741,908 A		4/1998	Gerster et al.		6,649,172		11/2003	Johnson
	,741,909 A ,750,134 A		4/1998 5/1998	Gerster et al. Scholz et al.		6,656,938 6,660,735			Crooks et al. Crooks et al.
5	,756,747 A			Gerster et al.		6,660,747	B2	12/2003	Crooks et al.
5	,776,432 A			Schultz et al.		6,664,260 6,664,264			Charles et al. Dellaria et al.
	,780,045 A ,837,809 A		7/1998	McQuinn et al. Grandy et al.		6,664,265			Crooks et al.
	,840,744 A		11/1998	Borgman et al.		6,667,312			Bonk et al.
	,854,257 A			Armitage et al.		6,670,372 6,677,334			Charles et al. Gerster et al.
	,861,268 A ,886,006 A		1/1999 3/1999	Tang et al. Nikolaides et al.		6,677,347	B2	1/2004	Crooks et al.
5	,939,047 A		8/1999	Jernberg		6,677,348 6,677,349			Heppner et al. Griesgraber
	,939,090 A ,962,479 A		8/1999 10/1999	Beaurline et al.		6,683,088		1/2004 1/2004	Crooks et al.
	,962,636 A			Bachmaier et al.		6,696,076		2/2004	Tomai et al.
	,977,366 A			Gerster et al.	1 (117 20 21	6,696,465 6,703,402		2/2004 3/2004	Dellaria et al. Gerster et al.
6	,017,537 A	. *	1/2000	Alexander	A61K 39/21 424/184.1	6,706,728		3/2004	Hedenstrom et al.
	,028,076 A		2/2000	Hirota et al.	12 11 10 111	6,716,988		4/2004	Dellaria et al.
	,039,969 A		3/2000	Tomai et al.		6,720,333 6,720,334		4/2004 4/2004	Dellaria et al. Dellaria et al.
	,057,371 A ,069,140 A		5/2000	Glennon Sessler et al.		6,720,422		4/2004	Dellaria et al.
6	,069,149 A		5/2000	Nanba et al.		6,743,920			Lindstrom et al.
	,071,949 A ,077,349 A			Mulshine et al. Kikuchi		6,756,382 6,780,873		6/2004 8/2004	Coleman et al. Crooks et al.
	,077,549 A 5,083,505 A			Miller et al.		6,784,188			Crooks et al.
6	,110,929 A		8/2000	Gerster et al.		6,790,961	B2	9/2004	Gerster et al.
	,113,918 A			Johnson et al.		6,797,718 6,800,624			Dellaria et al. Crooks et al.
	,121,323 A ,123,957 A		9/2000 9/2000	Merrill Jernberg		6,818,650		10/2004 11/2004	Griesgraber
	,126,938 A			Guy et al.		6,825,350		11/2004	Crooks et al.

US 9,248,127 B2 Page 3

(56)		Referen	ces Cited		2003/0187016			Crooks et al.
	U.S.	PATENT	DOCUMENTS		2003/0199461 2003/0199538	A1	10/2003	Averett et al. Skwierczynski et al.
			3.6.41		2003/0212092 2003/0216481		11/2003 11/2003	Heppner et al. Jia
6,841,678 6,852,861			Merli et al. Merli et al.		2003/0210481			Lipford et al.
6,855,217			Suzuki		2003/0232763	A1	12/2003	Jia
6,855,350		2/2005			2003/0232852			Lindstrom et al. Dellaria et al.
6,878,719			Lindstrom et al.		2004/0010007 2004/0014779			Gorden et al.
6,888,000 6,894,060		5/2005	Crooks et al. Slade		2004/0023870			Dedera et al.
6,894,165			Gerster et al.		2004/0067975			Crooks et al.
6,897,221			Crooks et al.		2004/0072858 2004/0076633			Charles et al. Thomsen et al.
6,900,016 6,903,113			Venter et al. Heppner et al.		2004/0091491			Kedl et al.
6,916,925			Rice et al.		2004/0092545			Crooks et al.
6,921,826	B2		Dellaria et al.		2004/0097542 2004/0106638			Crooks et al. Lindstrom
6,924,293 6,943,240			Lindstrom Bauer et al.		2004/0100038			Gupta et al.
6,943,255			Lindstrom et al.		2004/0132748		7/2004	Isobe et al.
6,949,649	B2	9/2005	Bonk et al.		2004/0132766			Griesgraber
6,953,804			Dellaria et al.		2004/0141950 2004/0147543			Noelle et al. Hays et al.
6,969,722 6,989,389			Heppner et al. Heppner et al.		2004/0157874			Crooks et al.
7,030,129			Miller et al.		2004/0162309			Gorden et al.
7,030,131			Crooks et al.		2004/0167157 2004/0171086			Masui et al. Fink et al.
7,038,053 7,049,439			Lindstrom et al. Crooks et al.		2004/0171080			Egging et al.
7,049,439			Brunner et al.		2004/0176367	A1	9/2004	Griesgraber et al.
7,078,523	B2	7/2006	Crooks et al.		2004/0180919			Miller et al.
7,091,214		8/2006	Hays et al.		2004/0181130 2004/0181211			Miller et al. Graham et al.
7,098,221 7,112,677		9/2006	Heppner et al. Griesgraber		2004/0191833			Fink et al.
7,115,622			Crooks et al.		2004/0192585			Owens et al.
7,125,890			Dellaria et al.		2004/0197865 2004/0202720			Gupta et al. Wightman et al.
7,132,429 7,163,947			Griesgraber et al. Griesgraber et al.		2004/0202720			Gerster et al.
7,179,253			Graham et al.		2004/0214851		10/2004	Birmachu et al.
7,199,131	B2	4/2007	Lindstrom		2004/0258698			Wightman et al.
7,214,675			Griesgraber		2004/0265351 2005/0009858			Miller et al. Martinez-Colon et al.
7,220,758 7,226,928			Dellaria et al. Mitra et al.		2005/0032829			Lindstrom et al.
7,276,515			Dellaria et al.		2005/0048072			Kedl et al.
7,288,550			Dellaria et al.		2005/0054590 2005/0054640			Averett Griesgraber et al.
7,375,180 7,387,271			Gorden et al. Noelle et al.		2005/0054665			Miller et al.
7,393,859			Coleman et al.		2005/0058673			Scholz et al 424/401
7,427,629			Kedl et al.		2005/0059072 2005/0070460			Birmachu et al. Hammerbeck et al.
7,544,697 7,598,382			Hays et al. Hays et al.		2005/0070400			Gutman et al.
7,612,083			Griesgraber		2005/0096259	A1	5/2005	Tomai et al.
7,648,997	B2	1/2010	Kshirsagar et al.		2005/0119273			Lipford et al.
2001/0046968		11/2001 2/2002	Zagon et al.		2005/0136065 2005/0148620			Valiante Crooks et al.
2002/0016332 2002/0055517		5/2002			2005/0158325			Hammerbeck et al.
2002/0058674			Hedenstrom A61K	9/0014	2005/0165236			Colombo et al.
2002/0107262	4.1	0/2002		514/292	2005/0171072 2005/0226878			Tomai et al. Tomai et al.
2002/0107262 2002/0110840			Lindstrom Tomai et al.		2005/0234088			Griesgraber
2002/0137101			Meyers		2005/0239733			Jurk et al.
2002/0173655			Dellaria et al.		2005/0239735 2005/0245562			Miller et al. Garcia-Echeverria et al.
2002/0193729 2003/0022302			Cormier et al. Lewis et al.		2005/0243302			Merrill et al.
2003/0044429			Aderem et al.		2005/0281813	A1		Dedera et al.
2003/0082108	$\mathbf{A}1$		Mulshine et al.		2006/0009482 2006/0100229			Tomai et al. Hays et al.
2003/0088102 2003/0096835			Matsubara et al. Crooks et al.		2006/0100229			Crooks et al.
2003/0096833			Gerster et al.		2006/0188913			Krieg et al 435/6
2003/0130299	A1	7/2003	Crooks et al.		2007/0060754			Lindstrom et al.
2003/0133733			Korhonen		2007/0066639 2007/0072893			Kshirsagar et al. Krepski et al.
2003/0133913 2003/0139364			Tomai et al. Krieg et al.		2007/0072893			Krepski et al.
2003/0144283		7/2003	Coleman et al.		2007/0155767	A1	7/2007	Radmer et al.
2003/0144286			Frenkel et al.		2007/0166384			Zarraga 424/486
2003/0158192			Crooks et al. Miller et al.		2007/0167476 2007/0208052			Kshirsagar et al. Prince et al.
2003/0161797 2003/0172391			Turner et al.		2007/0208032			Merrill et al.
			Braun A61	K 39/39	2007/0219196		9/2007	Krepski et al.
			42	24/184.1	2007/0219228	Al	9/2007	Niwas et al.

US 9,248,127 B2

Page 4

(56)	Reference	ces Cited	JP JP	4327587 A 5286973 A	11/1992 11/1993	
U.S	PATENT I	DOCUMENTS	JР	9208584 A	8/1997	
2007/0250001 41	11/2007	Dallaria et al	JP JP	11222432 A 2000247884 A	8/1999 9/2000	
2007/0259881 A1 2007/0259907 A1	11/2007	Dellaria et al. Prince	NZ	545412 A	12/2008	
2007/0287725 A1	12/2007	Miser et al.	RU	2076105 C1	3/1997	
2007/0292456 A1	12/2007	Hammerbeck et al.	RU RU	2127273 C1 2221798 C2	3/1999 1/2004	
2008/0015184 A1 2008/0070907 A1	3/2008	Kshirsagar et al. Griesgraber et al.	WO	WO-91/06682 A1	5/1991	
2008/0085895 A1	4/2008	Griesgraber et al.	WO	WO-92/06093 A1	4/1992	
2008/0114019 A1		Kshirsagar et al. Slade et al.	WO WO	WO-92/15581 A1 WO-92/15582 A1	9/1992 9/1992	
2008/0119508 A1 2008/0207674 A1		Stoesz et al.	WO	WO-93/05042 A1	3/1993	
2008/0269192 A1	10/2008	Griesgraber et al.	WO WO	WO-93/09119 A1	5/1993	
2008/0306252 A1 2008/0312434 A1		Crooks et al. Lindstrom et al.	WO	WO-93/20847 A1 WO-94/10171 A1	10/1993 5/1994	
2008/0312434 A1 2008/0318998 A1		Prince et al.	WO	WO-95/02597 A1	1/1995	
2009/0005371 A1	1/2009	Rice et al.	WO WO	WO-95/02598 A1	1/1995	
2009/0017076 A1 2009/0018122 A1		Miller et al. Lindstrom et al.	WO	WO-96/11199 A1 WO-96/21663 A1	4/1996 7/1996	
2009/0013122 A1 2009/0023722 A1		Coleman et al.	WO	WO-97/48703 A1	12/1997	
2009/0029988 A1		Kshirsagar et al.	WO WO	WO-97/48704 A1 WO-98/17279 A1	12/1997 4/1998	
2009/0030030 A1 2009/0030031 A1		Bonk et al. Kshirsagar et al.	WO	WO-98/30562 A1	7/1998	
2009/0042925 A1		Kshirsagar et al.	WO	WO-98/48805 A1	11/1998	
2009/0062272 A1		Bonk et al.	WO WO	WO-98/50547 A2 WO-98/54226 A1	11/1998 12/1998	
2009/0062328 A1		Kshirsagar et al.	WO	WO-99/18105 A1	4/1999	
2009/0069299 A1 2009/0069314 A1		Merrill et al. Kshirsagar et al.	WO	WO-99/29693 A1	6/1999	
2009/0075980 A1		Hays et al.	WO WO	WO-00/06577 A1 WO-00/09506 A1	2/2000 2/2000	
2009/0099161 A1		Rice et al.	wo	WO-00/09300 A1 WO-00/19987 A1	4/2000	
2009/0105295 A1 2009/0124611 A1		Kshirsagar et al. Hays et al.	WO	WO-00/40228 A2	7/2000	
2009/0163533 A1		Hays et al.	WO WO	WO-00/47719 A2 WO-00/75304 A1	8/2000 12/2000	
2009/0176821 A1	7/2009	Kshirsagar et al.	WO	WO-00/76505 A1	12/2000	
2009/0240055 A1		Krepski et al.	WO	WO-00/76518 A1	12/2000	
2009/0253695 A1 2009/0270443 A1		Kshirsagar et al. Stoermer et al.	WO WO	WO-00/76519 A1 WO-01/34709 A1	12/2000 5/2001	
2009/0318435 A1	12/2009	Hays et al.	WO	WO-01/51486 A2	7/2001	
2010/0113565 A1		Gorden et al.	WO WO	WO-01/55439 A1 WO-01/58900 A1	8/2001 8/2001	
2010/0240693 A1	9/2010	Lundquist, Jr. et al.	WO	WO-01/74343 A2	10/2001	
FOREI	GN PATEN	NT DOCUMENTS	WO WO	WO-01/74821 A1 WO 0174343 A2 *	10/2001	A61K 31/4745
		2 12 2 2 5	WO	WO 01/97795	12/2001	AUIN 31/4/43
	54336 A1 58625 A1	2/2005 3/2005	WO	WO-02/07725 A1	1/2002	
	39547 B2	11/2006	WO WO	WO-02/22809 A2 WO-02/24225 A1	3/2002 3/2002	
	44087 A1 58996 A1	12/1991	wo	WO-02/36592 A1	5/2002	
	54663 A	10/1994 6/2002	WO	WO-02/46188 A2	6/2002	
EP 0 14	5 340 A2	6/1985	WO WO	WO-02/46189 A2 WO-02/46190 A2	6/2002 6/2002	
	3 420 A1 0 950 A1	5/1987 4/1989	WO	WO-02/46191 A2	6/2002	
	5 630 A2	9/1990	WO WO	WO-02/46192 A2 WO-02/46193 A2	6/2002 6/2002	
	9 302 A1	9/1990	wo	WO-02/46194 A2	6/2002	
	4 026 A1 5 306 A2	10/1990 5/1991	WO	WO-02/46749 A2	6/2002	
EP 0.51	0 260 A2	10/1992	WO WO	WO-02/085905 A1 WO-02/102377 A1	10/2002 12/2002	
	6 008 A1 5 389 A1	8/1993 3/1995	WO	WO-03/008421 A1	1/2003	
	8 277 A1	6/1997	WO WO	WO-03/009852 A1 WO-03/020889 A2	2/2003 3/2003	
EP 0 89	4 797 A1	2/1999	WO	WO-03/020889 A2 WO-03/043572 A2	5/2003	
	2 960 A2 7 709 A2	3/2001 5/2001	WO	WO-03/045391 A1	6/2003	
	4 764 A1	6/2001	WO WO	WO-03/045494 A2 WO-03/045929 A1	6/2003 6/2003	
	5 340 A2	10/2001	WO	WO-03/050117 A1	6/2003	
	6 582 A1 1 791 B1	11/2002 9/2003	WO	WO-03/050118 A1	6/2003	
EP 1 49	5 758 A2	1/2005	WO WO	WO-03/050119 A2 WO-03/050121 A1	6/2003 6/2003	
	34479 A2 10051 A2	3/1985 6/1991	WO	WO-03/077944 A1	9/2003	
HU 2	18950 A2	9/1995	WO	WO-03/080114 A2	10/2003	
	73534 A 50197 A	12/1990 5/1978	WO WO	WO-03/086280 A2 WO-03/086350 A1	10/2003 10/2003	
	10787 A	3/1978 1/1988	WO	WO-03/089602 A2	10/2003	
JP 11	80156 A	7/1989	WO	WO-03/097641 A2	11/2003	
JP 40	56571 A	3/1992	WO	WO-03/101949 A2	12/2003	

(56)	Referen	ces Cited	WO WO-2006/107753 A2 10/2006
	EODEIGN DATE	NT DOCUMENTS	WO WO-2006/107771 A2 10/2006 WO WO-2006/107851 A1 10/2006
	FOREIGN PALE	NI DOCUMENTS	WO WO-2006/107853 A2 10/2006
WO	WO-03/103584 A2	12/2003	WO WO-2006/121528 A2 11/2006
WO	WO-2004/009593 A1	1/2004	WO WO-2006/122806 A2 11/2006
WO	WO-2004/028539 A2	4/2004	WO WO-2007/028129 A1 3/2007
WO	WO-2004/041285 A1	5/2004	WO WO-2007/030775 A2 3/2007 WO WO-2007/030777 A2 3/2007
WO WO	WO-2004/043913 A2 WO-2004/053057 A2	5/2004 6/2004	WO WO-2007/035935 A1 3/2007
wo	WO-2004/053452 A2	6/2004	WO WO-2007/056112 A2 5/2007
WO	WO-2004/058759 A1	7/2004	WO WO-2007/062043 A1 5/2007
WO	WO-2004/071459 A2	8/2004	WO WO-2007/075468 A1 7/2007 WO WO-2007/079086 A1 7/2007
WO WO	WO-2004/075865 A2 WO-2004/080398 A2	9/2004 9/2004	WO WO-2007/079146 A1 7/2007
WO	WO-2004/080398 A2 WO-2004/091500 A2	10/2004	WO WO-2007/079169 A2 7/2007
WO	WO-2004/096144 A2	11/2004	WO WO-2007/079171 A2 7/2007
WO	WO-2004/110991 A2	12/2004	WO WO-2007/079202 A2 7/2007 WO WO-2007/079203 A2 7/2007
WO	WO-2004/110992 A2	12/2004	WO WO-2007/09263 A2 //2007 WO WO-2007/092641 A2 8/2007
WO WO	WO-2005/003064 A2 WO-2005/003065 A2	1/2005 1/2005	WO WO-2007/106852 A2 9/2007
wo	WO-2005/016273 A2	2/2005	WO WO-2007/106854 A2 9/2007
WO	WO-2005/016275 A2	2/2005	WO WO-2007/120121 A2 10/2007
WO	WO 2005/018551 A2	3/2005	WO WO-2007/143526 A2 12/2007 WO WO-2008/002646 A2 1/2008
WO WO	WO-2005/018555 A2 WO 2005/018556 A2	3/2005 3/2005	WO WO-2008/008432 A2 1/2008
wo	WO 2005/020999 A1	3/2005	WO WO-2008/030511 A2 3/2008
WO	WO-2005/023190 A2	3/2005	WO WO-2008/036312 A1 3/2008
WO	WO-2005/025614 A3	3/2005	WO WO-2008/045543 A1 4/2008
WO WO	WO-2005/029037 A2	3/2005	OTHER PUBLICATIONS
WO	WO 2005/032484 A2 WO-2005/041891 A2	4/2005 5/2005	[No Author Listed] "Aqueous cream." Wikipedia. Available at http://
wo	WO 2005/048933 A2	6/2005	en.wikipedia.org/wiki/Aqueous_cream. Last accessed Sep. 15,
WO	WO 2005/048945 A2	6/2005	2010.
WO	WO-2005/049076 A1	6/2005	[No Author Listed] "Comparative Tests." Filed Apr. 8, 2005 during
WO WO	WO 2005/051317 A2 WO 2005/051324 A2	6/2005 6/2005	prosecution for EP 00938205.2, EP 00950215.4 and EP 00938211.0
wo	WO-2005/051324 A2 WO-2005/054237 A1	6/2005	in the name of 3M Innovative Properties Co.
WO	WO-2005/054238 A1	6/2005	[No Author Listed] Chemical Abstracts. 1964;61(1):6060g.
WO	WO-2005/065678 A1	7/2005	[No Author Listed] Encyclopedia of Pharmaceutical Technology.
WO	WO 2005/066169 A2	7/2005 7/2005	2nd Ed. Marcel Dekker, Inc. 2002:856-60.
WO WO	WO 2005/066170 A1 WO 2005/066172 A1	7/2003	Agrawal et al., Synthetic agonists of Toll-like receptors 7, 8 and 9.
wo	WO-2005/067500 A2	7/2005	Biochem Soc Trans. Dec. 2007;35(Pt 6):1461-7. Ahmed et al., A new rapid and simple non-radioactive assay to
WO	WO 2005/076783 A2	8/2005	monitor and determine the proliferation of lymphocytes: an alterna-
WO WO	WO 2005/079195 A2 WO 2005/094531 A2	9/2005 10/2005	tive to [3H]thymidine incorporation assay. J Immunol Methods. Apr.
WO	WO-2005/094331 A2 WO-2005/110013 A2	11/2005	15, 1994;170(2):211-24.
WO	WO-2005/123079 A2	12/2005	Akira et al., Recognition of pathogen-associated molecular patterns
WO	WO-2005/123080 A2	12/2005	by TLR family. Immunol Lett. 2003;85:85-95.
WO	WO-2006/004737 A2	1/2006	Akira et al., Toll-like receptors: critical proteins linking innate and
WO WO	WO-2006/009826 A1 WO-2006/009832 A1	1/2006 1/2006	acquired immunity. Nature Immunol. 2001;2(8):675-80.
wo	WO-2006/026760 A2	3/2006	Alexopoulou et al., Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. Oct. 18,
WO	WO-2006/028451 A1	3/2006	2001;413(6857):732-8.
WO	WO-2006/028545 A2	3/2006	Assuma et al., IL-1 and TNF Antagonists Inhibit the Inflammatory
WO WO	WO-2006/028962 A2 WO 2006/029115 A2	3/2006 3/2006	Response and Bone Loss in Experimental Periodontitis. J Immunol.
wo	WO-2006/031878 A2	3/2006	2000;160:403-09.
WO	WO-2006/038923 A2	4/2006	Au et al., Virus-mediated induction of interferon A gene requires
WO WO	WO-2006/063072 A2	6/2006	cooperation between multiple binding factors in the interferon alpha promoter region. J Biol Chem. Nov. 15, 1993;268(32):24032-40.
WO	WO-2006/063152 A2 WO-2006/065280 A2	6/2006 6/2006	Auerbach et al., Erythema nodosum following a jellyfish sting. J
wo	WO 2006/073939	7/2006	Emerg Med. NovDec. 1987;5(6):487-91.
WO	WO-2006/073940 A2	7/2006	Auwers, [Uber die Isomerie-Verhaltnisse in der Pyrazol-Reihe.
WO	WO-2006/074003 A2	7/2006	Berichte. VI.] 1926;601-607. German.
WO WO	WO-2006/074045 A2 WO-2006/083440 A2	7/2006 8/2006	Bachman et al., Synthesis of substituted quinolylamines. Derivatives
WO	WO 2006/084073	8/2006	of 4-amino-7-chloroquinoline. J Org Chem. 1950;15(6):1278-84.
WO	WO-2006/084251 A2	8/2006	Baffis et al., Use of interferon for prevention of hepatocellular carcinoma in circlestic patients with hepatitis B or hepatitis C virus infections.
WO	WO-2006/086449 A2	8/2006	noma in cirrhotic patients with hepatitis B or hepatitis C virus infection. Ann Intern Med. Nov. 2, 1999;131(9):696-701.
WO WO	WO-2006/086633 A2 WO-2006/086634 A2	8/2006 8/2006	Baker et al., Oral infection with Porphyromonas gingivalis and
WO	WO-2006/091394 A2	8/2006	induced alveolar bone loss in immunocompetent and severe com-
wo	WO-2006/091567 A2	8/2006	bined immunodeficient mice. Arch Oral Biol. Dec.
WO	WO-2006/091568 A2	8/2006	1994;39(12):1035-40.
WO	WO-2006/091647 A2	8/2006	Baldwin et al., Amino Acid Synthesis via Ring Opening of
WO	WO-2006/093514 A2	9/2006	N-Sulphonyl Aziridine-2-Carboxylate Esters with Organometallic
WO	WO-2006/098852 A2	9/2006	Reagents. Tetrahedron. 1993;49:6309-30.

OTHER PUBLICATIONS

Baranov et al., Imidazo[4-5c]quinolines. In Chemical Abstracts. 1976;85:637. Abstract 94362z.

Bártová et al., Th1 and Th2 cytokine profile in patients with early onset periodontitis and their healthy siblings. Mediators Inflamm. 2000;9(2):115-20.

Beck et al., Dental Infections and Atherosclerosis. Am Heart J. 1999;13:528-33.

Beckett et al., Configurational Studies in Synthetic Analgesics: the Synthesis of (-)-Methadone from D-(-)-Alanine. J Chem Soc. 1957;1:858-61.

Beilman et al., Experimental brown spider bite in the guinea pig: Results of treatment with dapsone or hyperbaric oxygen. J Wilderness Medicine. 1994;5:287-94.

Belikov, Abbreviated Guide to Synthetic and Natural Medications. Pharmaceutical Chemistry. Higher School. 1993;1:43-47. Russian. Beltrami et al., Some Methylhydrazonium Salts; An Improved Synthesis of Tetramethylhydrazine. J Am Chem Soc. 1956;78:2467-68. Berenyi et al., Ring transformation of condensed dihyrdo-astriazines. J Heterocyclic Chem. 1981;18:1537-40.

Bernstein et al., Daily or weekly therapy with resiquimod (R-848) reduces genital recurrences in herpes simplex virus-infected guinea pigs during and after treatment. J Infect Dis. Mar. 15, 2001;183(6):844-9. Epub Feb. 13, 2001.

Bertino et al., Principles of Cancer Therapy. Cecil Textbook of Medicine. Goldman et al., eds. 21th Ed. W.B. Saunders Company. 2000:1:1060-74.

Beutler et al., Tumor necrosis factor in the pathogenesis of infectious diseases. Crit Care Med. Oct. 1993;21(10 Suppl):S423-35.

Beutner et al., Therapeutic response of basal cell carcinoma to the immune response modifier imiquimod 5% cream. J Am Acad Dermatol. Dec. 1999;41(6):1002-7.

Beutner et al., Treatment of genital warts with an immune-response modifier (imiquimod). J Am Acad Dermatol. Feb. 1998;38(2 Pt 1):230-9.

Binder, Acute arthropod envenomation. Incidence, clinical features and management. Med Toxicol Adverse Drug Exp. May-Jun. 1989;4(3):163-73.

Bishop et al., Molecular mechanisms of B lymphocyte activation by the immune response modifier R-848. J Immunol. Nov. 15, 2000;165(10):5552-7.

Bitterman-Deutsch et al., [Brown spider bite]. Harefuah. Sep. 1990;119(5-6):137-9. Hebrew.

Booth et al., Dapsone suppresses integrin-mediated neutrophil adherence function. J Invest Dermatol. Feb. 1992;98(2):135-40.

Borkan et al., An outbreak of venomous spider bites in a citrus grove. Am J Trop Med Hyg. Mar. 1995;52(3):228-30.

Bourke et al., The toll-like receptor repertoire of human B lymphocytes: inducible and selective expression of TLR9 and TLR10 in normal and transformed cells. Blood. Aug. 1, 2003;102(3):956-63. Epub Apr. 10, 2003.

Brants, The Distribution of Tobacco Mosaic Virus (TMV) in Excised Tomato Roots Cultivated in Vitro. Tijdschr Plantenziekten, 1962;68:198-207.

Brassard et al., Interferon- α as an immunotherapeutic protein. J Leukoc Biol. Apr. 2002;71(4):565-81.

Breathnach, Azelaic acid: potential as a general antitumoural agent. Med Hypotheses. Mar. 1999;52(3):221-6.

Brennan et al., Automated bioassay of interferons in microtest plates. Biotechniques. Jun./Jul. 1983(1):78-82.

Broughton, Management of the brown recluse spider bite to the glans penis. Mil Med. Oct. 1996;161(10):627-9.

Buckle et al., 4-hydroxy-3-nitro-2-quinolones and related compounds as inhibitors of allergic reactions. J Med Chem. Jul. 1975;18(7):726-32.

Buisson et al., Preparation and use of (S)-O-acetyllactyl chloride (Mosandl's reagent) as a chiral derivatizing agent. Tetrahedron Assym. 1999;10:2997-3002.

Bulut et al., Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi

outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol. Jul. 15, 2001;167(2):987-94.

Burleson, Chapter 14. Influenza Virus Host Resistance Model for Assessment of Immunostimulation, and Antiviral Compounds. Methods in Immunology. 1995;2:181-202.

Buschle et al., Interferon γ inhibits apoptotic cell death in B cell chronic lymphocytic leukemia. J Exp Med. Jan. 1, 1993;177(1):213-8

Cai et al., Evaluation of trifluoroacetic acid as an ion-pair reagent in the separation of small ionizable molecules by reversed-phase liquid chromatography. Analytica Chmica Acta. 1999;399:249-258.

Cantell et al., IFN- γ Enhances Production of IFN- α in Human Macrophages but Not in Monocytes. J Interferon and Cytokine Res. 1996;16:461-63.

Carceller et al., Design, synthesis, and structure-activity relationship studies of novel 1-[(1-acyl-4-piperidyl)methyl]-1H-2-methylimidazo[4,5-c]pyridine derivatives as potent, orally active platelet-activating factor antagonists. J Med Chem. Jan. 19, 1996;39(2):487-93.

Carrigan et al., Synthesis and in vitro pharmacology of substituted quinoline-2,4-dicarboxylic acids as inhibitors of vesicular glutamate transport. J Med Chem. May 23, 2002;45(11):2260-76.

Catarzi et al., Tricyclic heteroaromatic systems. Pyrazolo[3,4-c]quinolin-4-ones and pyrazolo[3,4-c]quinoline-1,4-diones: synthesis and benzodiazepine receptor activity. Arch Pharm (Weinheim). Dec. 1997;330(12):383-6.

Cheson et al., National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment Blood. Jun. 15, 1996;87(12):4990-7.

Chuang et al., Toll-like receptor 9 mediates CpG-DNA signaling. J Leukoc Biol. Mar. 2002;71(3):538-44.

Claisen, [Uber α-Methyl-isoxazol.] Berichte. 1909;42:59-69. German

Cohen et al., Cytokine function: a study in biologic diversity. Am J Clin Pathol. May 1996;105(5):589-98.

Cole et al., Brown recluse spider envenomation of the eyelid: an animal model. Ophthal Plast Reconstr Surg. Sep. 1995;11(3):153-64. Colotta et al., Synthesis and structure-activity relationships of a new set of 2-arylpyrazolo[3,4-c]quinoline derivatives as adenosine receptor antagonists. J Med Chem. Aug. 10, 2000;43(16):3118-24.

Cristalli et al., Adenosine deaminase inhibitors: synthesis and structure-activity relationships of imidazole analogues of erythro-9-(2-hydroxy-3-nonyl)adenine. J Med Chem. Mar. 1991;34(3):1187-92. Dai et al., Synthesis of a novel C2-symmetric thiourea and its application in the Pd-catalyzed cross-coupling reactions with arenediazonium salts under aerobic conditions. Org Lett. Jan. 22, 2004;6(2):221-4.

Davis, Current therapy for chronic hepatitis C. Gastroenterology. Feb. 2000;118(2 Suppl 1):S104-14.

Davis et al., Heterocyclic Syntheses with Malonyl Chloride. Part VI. 3-Substituted Pyridine Derivatives from α -Methylene-nitriles. J Chem Soc. 1962:3638-44.

Davis et al., Self-administered topical imiquimod treatment of vulvar intraepithelial neoplasia. A report of four cases. J Reprod Med. Aug. 2000;45(8):619-23.

De et al., Structure-activity relationships for antiplasmodial activity among 7-substituted 4-aminoquinolines. J Med Chem. Dec. 3, 1998;41(25):4918-26.

Debol et al., Anti-inflammatory action of dapsone: inhibition of neutrophil adherence is associated with inhibition of chemoattractant-induced signal transduction. J Leukoc Biol. Dec. 1997;62(6):827-36.

De Clerq, Synthetic interferon inducers. Top Curr Chem. 1974;52:173-208.

Decker et al., Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood. Feb. 1, 2000;95(3):999-1006.

Decker et al., Immunostimulatory CpG-oligonucleotides induce functional high affinity IL-2 receptors on B-CLL cells: costimulation with IL-2 results in a highly immunogenic phenotype. Exp Hematol. May 2000;28(5):558-68.

OTHER PUBLICATIONS

Delgado, Textbook of Organic Medicinal and Pharmaceutical Chemistry, Ninth Edition, Remers, ed., 1991:30-1.

Denzel et al. Imidazo [4,5-c]- and [4,5-b]pyridines. J. Heterocyclic Chem. 1977;14:813-821.

Diaz-Arrastia et al., Clinical and molecular responses in high-grade intraepithelial neoplasia treated with topical imiquimod 5%. Clin Cancer Res. Oct. 2001;7(10):3031-3.

Di Carlo et al., Neutrophils in anti-cancer immunological strategies: old players in new games. J Hematother Stem Cell Res. Dec. 2001;10(6):739-48.

Dicken et al., Reactions at High Pressures. [3+2] Dipolar Cydoaddition of Nitrones with Vinyl Ethers. J Org Chem. 1982;47:2047-51. Dockrell et al., Imiquimod and resiquimod as novel immunomodulators. J Antimicrob Chemother. Dec. 2001;48(6):751-5.

Dorwald, "Preface." Side Reactions in Organic Synthesis. A Guide to Successful Synthesis Design. Wiley-VCH. 2005: IX.

Douglas, Introduction to Viral Diseases. In: Cecil Textbook of Medicine. Bennet et al., eds. 20th Ed. W.B. Saunders Company. 1996:2:1739-47.

Doyle et al., Toll-like receptor 3 mediates a more potent antiviral response than Toll-like receptor 4. J Immunol. Apr. 1, 2003;170(7):3565-71.

Drexler et al., Bryostatin 1 induces differentiation of B-chronic lymphocytic leukemia cells. Blood. Oct. 1989;74(5):1747-57.

Dzionek et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol. Dec. 1, 2000;165(11):6037-46.

Edwards et al., Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol. Apr. 2003;33(4):827-33.

Eriks et al., Histamine H2-receptor agonists. Synthesis, in vitro pharmacology, and qualitative structure-activity relationships of substituted 4- and 5-(2-aminoethyl)thiazoles. J Med Chem. Aug. 21, 1992;35(17):3239-46.

Fecci et al., The history, evolution, and clinical use of dendritic cell-based immunization strategies in the therapy of brain tumors. J Neurooncol. Aug.-Sep. 2003;64(1-2):161-76.

Fitzgerald-Bocarsly et al., Virally-Responsive IFN-α Producing Cells in Human Blood and Tonsil Are CD11C/CD123+ Cells Identical to Precursors of Type Two Dendritic Cells (pDC2). J Interferon Cytokine Res. 1999;19(1):S117. Abstract P81.

Flo et al., Involvement of toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers. J Biol Chem. Sep. 20, 2002;277(38):35489-95. Epub Jun. 27, 2002.

Fonteneau et al., Human Immunodeficiency Virus Type 1 Activates Plasmacytoid Dendritic Cells and Concomitantly Induces the Bystander Maturation of Myeloid Dendritic Cells. J Virol. 2004;78(10):5223-32.

Frankel et al., The Preparation of N-Disubstituted Formamides. Tetrahedron Lett. 1959;7:5-7.

Frantz et al., Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest. Aug. 1999;104(3):271-80.

Fu et al., Regioselective Catalytic Hydrogenation of Polycyclic Aromatic Hydocarbons under Mild conditions. J Org Chem. 1980;45:2979-803.

Fuchsberger et al., Priming Interferon-a 1 or Interferon-a 2 Enhances the Production of Both Subtypes Simultaneously. J Interferon and Cytokine Res. 1995;15:637-39.

Galose, Dapsone (diaminodiphenylsulphone DDS). Clinical Toxicology Review. 1999:21(9). 3 pages.

Gendron, Loxosceles ignali Envenomation. Am J Emerg Med. Jan. 1990;8(1):51-4.

Genevois-Borella et al., Synthesis of 1-(3-R-Amino-4-Hydroxy Butyl)thymine Acyclonucleoside. Analogs as Potential Anti-AIDS Drugs. Tetrahedron Lett. 1990;31:4879-82.

Giannini et al., Influence of the Mucosal Epithelium Microenvironment on Langerhans Cells: Implications for the Development of Squamous Intraepithelial Lesions of the Cervix. Int J Cancer. 2002;97:654-59.

Gibson et al., Cellular requirements for cytokine production in response to the immunomodulators imiquimod and S-27609. J Interferon Cytokine Res. Jun. 1995;15(6):537-45.

Gibson et al., Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell Immunol. Jul.-Aug. 2002;218(1-2):74-86.

Gitelson et al., Chronic lymphocytic leukemia-reactive T cells during disease progression and after autologous tumor cell vaccines. Clin Cancer Res. May 2003;9(5):1656-65.

Gomez et al., Intradermal anti-loxosceles Fab fragments attenuate dermonecrotic arachnidism. Acad Emerg Med. 1999;6:1195-202.

Gorden et al., Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol. Feb. 1, 2005;174(3):1259-68.

Gordon, Pattern recognition receptors: doubling up for the innate immune response. Cell. Dec. 27, 2002;111(7):927-30.

Gunning et al., Chemoprevention by lipoxygenase and leukotriene pathway inhibitors of vinyl carbamate-induced lung tumors in mice. Cancer Res. Aug. 1, 2002;62(15):4199-201.

Gürsel et al., Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J Leukoc Biol. May 2002;71(5):813-20.

Hart, Napthyridines Hydroxynaphthyridies, Journal of Chemical Society, 1956;Part III:212-4.

Hartmann et al., Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-alpha induction in plasmacytoid dendritic cells. Eur J Immunol. Jun. 2003;33(6):1633-41

Hayashi Toll-like receptors stimulate human neutrophil function. Blood. Oct. 1, 2003;102(7):2660-69. Epub Jun. 26, 2003.

Hayes et al., Regulation of Interferon Production by Human Monocytes: Requirements for Priming for Lipopolysaccharide-Induced Production. J Leukocyte Biol. 1991;50:176-81.

Heil et al., Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. Mar. 5, 2004;303(5663):1526-9. Epub Feb. 19, 2004.

Heil et al., Synthetic immunostimulatory compounds activate immune cells via TLR7 and TLR8. 33th Annual Meeting of the Deutsche Gessellschaft Mr Immunologie, Marburg 2002. Abstract C.6.

Hemmi et al., Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. Feb. 2002;3(2):196-200. Epub Jan. 22, 2002.

Hobbs et al., Comparison of hyperbaric oxygen and dapsone therapy for loxosceles envenomation. Acad Emerg Med. Aug. 1996;3(8):758-61

Hoffman et al., Conformational requirements for histamine H2-receptor inhibitors: a structure-activity study of phenylene analogues related to cimetidine and tiotidine. J Med Chem. Feb. 1983;26(2):140-4.

Hofmanová et al., Lipoxygenase inhibitors induce arrest of tumor cells in S-phase of the cell cycle. Neoplasma. 2002;49(6):362-7.

Holladay et al., Structure-activity studies related to ABT-594, a potent nonopioid analgesic agent: effect of pyridine and azetidine ring substitutions on nicotinic acetylcholine receptor binding affinity and analgesic activity in mice. Bioorg Med Chem Lett. Oct. 6, 1998;8(19):2797-802.

Horng et al., The adaptor molecule TIRAP provides signaling specificity for Toll-like receptors. Nature. Nov. 21, 2002;420(6913):329-

Hornung et al., Quantitative Expression of Toll-Like Receptor 1-10 mRNA in Cellular Subsets of Human Peripheral Blood Mononuclear Cells and Sensitivity to CpG Oligodeoxynucleotides. Journal of Immunol. 2002;168:4531-37.

Houben-Weyl, Quinoline and Isoquinoline. Methoden der Organischen Chemie. 1980:271-79. German.

Houston et al., Potential inhibitors of S-adenosylmethionine-dependent methyltransferases. 8. Molecular dissections of carbocydic

OTHER PUBLICATIONS

3-deazaadenosine as inhibitors of S-adenosylhomocysteine hydrolase. J Med Chem. Apr. 1985,28(4):467-71.

Huppatz, Systemic fungicides. The synthesis of certain pyrazole analogues of carboxin. Aust J Chem. 1983;36:135-47.

Iino et al., Treatment of Chronic Hepatitis C With High-Dose Interferon α -2b. Multicenter Study. Dig Dis Sci. 1993;38(4):612-18.

Ito et al., Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med. Jun. 3, 2002;195(11):1507-12.

Iwashita et al., Syntheses of Isoretronecanol and Lupinine. J Org Chem. 1982;47:230-33.

Izumi et al., 1H-Imidazo[4,5-c]quinoline derivatives as novel potent TNF-alpha suppressors: synthesis and structure-activity relationship of 1-, 2-and 4-substituted 1H-imidazo[4,5-c]quinolines or 1H-imidazo[4,5-c]pyridines. Bioorg Med Chem. Jun. 12, 2003;11(12):2541-50.

Jacobs, Chapter 1. The Synthesis of Acetylenes. In: Organic Reactions. New York: Wiley & Sons, Inc., 1949. vol. 5. 1-78.

Jahnsen et al., Extensive recruitment of IL-3Rαhigh dendritic-cell precursors to allergic nasal mucosa during allergen challenge. Immunology Lett. 1999;69(1):123. Abstract #32.2.

Jain et al., Chemical and pharmacological investigations of some omega-substituted alkylamino-3-aminopyridines. J Med Chem. Jan. 1968;11(1):87-92.

Jurk et al., Human TLR7 and TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol. Jun. 2002;3(6):499.

Juweid, Radioimmunotherapy of B-Cell Non-Hodgkin's Lymphoma: From Clinical Trials to Clinical Practice. J Nuclear Med. 2002;43(11):1507-29.

Katritsky et al., Comprehensive Heterocyclic Chemistry: The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds. 1984;2:586-587.

Keating et al., Long-term follow-up of patients with chronic lymphocytic leukemia treated with fludarabine as a single agent Blood. Jun. 1, 1993;81(11):2878-84.

Kerkmann et al., Activation with CpG-A and CpG-B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells. J Immunol. May 1, 2003;170(9):4465-74.

Klausen et al., Two complementary methods of assessing periodontal bone level in rats. Scand J Dent Res. Dec. 1989;97(6):494-9.

Klinman, Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol. Apr. 2004;4(4):249-58.

Kloek et al., An improved method for the synthesis of stabilized primary enamines and imines. J Org Chem. 1978;43:1460-62.

Kloetzel, Reactions of nitroparaffins. I. Synthesis and reduction of some ò-nitrokenes. J Am Chem Soc. 1947;69:2271-2275.

Kornman, Host modulation as a therapeutic strategy in the treatment of periodontal disease. Clin Infect Dis. Mar. 1999;28(3):520-6.

Kourafalos et al., Synthesis of 7-aminopyrazolo[3,4-c]pyridine as a probe for the preparation of compounds of pharmacological interest. Heterocycles. 2002;57(12):2335-2343.

Krause et al., Autoimmune aspects of cytokine and anticytokine therapies. Am J Med. Oct. 1, 2003;115(5):390-7.

Krenitsky et al., Imidazo[4,5-c]pyridines (3-deazapurines) and their nucleosides as immunosuppressive and anti-inflammatory agents. J Med Chem. Jan. 1986;29(1):138-43.

Kurt-Jones et al., Role of toll-like receptor 2 (TLR2) in neutrophil activation: GM-CSF enhances TLR2 expression and TLR2-mediated interleukin 8 responses in neutrophils. Blood. Sep. 1, 2002;100(5):1860-8.

Lall et al., Serine and threonine beta-lactones: a new dass of hepatitis A virus 3C cysteine proteinase inhibitors. J Org Chem. Mar. 8, 2002;67(5):1536-47.

Lee et al., p38 mitogen-activated protein kinase inhibitors—mechanisms and therapeutic potentials. Pharmacol Ther. 1999;82:389-97.

Lee et al., Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem. Apr. 23, 2004;279(17):16971-9. Epub Feb. 13, 2004. Lehner et al., The role of $\gamma\delta$ cells and β -chemokines in mucosal protection against SIV infection. Immunology Lett. 1999;69:25-192. Abstract 2.1.

Levy et al., Unique efficacy of Toll-like receptor 8 agonists in activating human neonatal antigen-presenting cells. Blood. Aug. 15, 2006;108(4):1284-90. Epub Apr. 25, 2006.

Leynadier et al., Allergic reactions to North African scorpion venom evaluated by skin test and specific IgE. J Allergy Clin Immunol. Jun. 1997;99(6 Pt 1):851-3. 4 pages.

Li et al., An improved protocol for the preparation of 3-pyridyl- and some arylboronic acids. J Org Chem. Jul. 26, 2002;67(15):5394-7. Li et al., Synthesis, CoMFA analysis, and receptor docking of 3,5-diacyl-2, 4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. J Med Chem. Feb. 25, 1999;42(4):706-21.

Litt et al., Mucosal delivery of vaccine antigens displayed on the surface of Lactococcus lactis. Immunology Lett. 1999:69(1):61. Abstract #11.26.

Liu et al., Synthesis of halogen-substituted 3-deazaadenosine and 3-deazaguanosine analogues as potential antitumor/antiviral agents. Nucleosides Nucleotides Nucleic Acids. Dec. 2001;20(12):1975-2000.

Loesche et al., Treatment paradigms in periodontal disease. Compend Contin Educ Dent. Mar. 1997;18(3):221-6, 228-30, 232 passim; quiz 234. Review.

Luger et al., Evidence for an epidermal cytokine network. J Invest Dermatol. Dec. 1990;95(6 Suppl):100S-104S.

Luskin et al., Olefinic Derivatives of 2,4-Diamino-s-triazines. J Org Chem. 1958;23:1032-37.

Macchia et al., Synthesis and antiviral properties of 9-[(2-methyleneaminoxyethoxy)methyl]guanine derivatives as novel Acyclovir analogues. Farmaco. Feb. 2000;55(2):104-8.

Majeski et al., Action of venom from the brown recluse spider (*Loxosceles recluse*) on human neutrophils. Toxicon. 1977;15(5):423-7.

Makarenkova et al., Identification of delta- and mu-type opioid receptors on human and murine dendritic cells. J Neuroimmunol. 2001:117:68-77.

Male et al., Introduction to the Immune System. In: Immunology. Elsevier. 2006:6-7.

Masihi, Progress on novel immunomodulatory agents for HIV-1 infection and other infectious diseases. Expert Opin Ther Patents. 2003;13(6):867-82.

Masiukiewicz et al., Scalable Syntheses of N^{α} -Benzyloxycarbonyl- $_{L}$ - Ornithine and of N^{α} -(9-Fluorenylmethoxy)Carbonyl- $_{L}$ -Omithine. Org Prep Proced Int. 2002;34:531-37.

Mataka et al., Condensation reaction of 3,4-Dibenzoyl-1-methyl-2,5-diphenylpyrrole and -1-phenylpyrazole with methylamine derivatives affording pyrrolo [3,4-c] pyridine and 2H-pyrazolo[3,4-c]- and [4,3-c]pyridines. Journal of Heterocyclic Chemistry. 1981;18(6):1073-5.

Mathur et al., Cell-mediated immune system regulation in periodontal diseases. Crit Rev Oral Biol Med. 1997;8(1):76-89.

Maynor et al., Brown recluse spider envenomation: a prospective trial of hyperbaric oxygen therapy. Acad Emerg Med. Mar. 1997;4(3):184-92.

Mbow et al., Small molecule and biologic modulators of the immune response to hepatitis C virus. Mini Rev Med Chem. May 2006;6(5):527-31.

McCarthy et al., Opioids, opioid receptors, and the immune response. Drug & Alcohol Dependence. 2001;62:111-23.

McKennon et al., A Convenient Reduction of Amino Acids and Their Derivatives. J Org Chem. 1993;58:3568-71.

McLaughlin et al., Opioid growth factor (OGF) inhibits the progression of human squamous cell carcinoma of the head and neck transplanted into nude mice. Cancer Lett. 2003;199:209-17.

Medzhitov, Toll-Like Receptors and Innate Immunity. Nature Rev Immunol. 2001;1:135-45.

Mee et al., Stille coupling made easier—the synergic effect of copper(I) salts and the fluoride ion. Angew Chem. 2004;116:1152-56.

OTHER PUBLICATIONS

Merigian et al., Envenomation From the Brown Recluse Spider. Review of Mechanism and Treatment Options. Am J Ther. Oct. 1996;3(10):724-734.

Miller et al., Imiquimod applied topically: a novel immune response modifier and new class of drug. Int J Immunopharmacol. Jan. 1999:21(1):1-14

Minakawa et al., Nucleosides and Nucleotides. 184. Synthesis and Conformational Investigation of Anti-Fixed 3-Deaza-3-halopurine Ribonucleosides. J Org Chem. 1999;64:7158-72.

Moebius et al., The mysteries of sigma receptors: new family members reveal a role in cholesterol synthesis. Trends Pharmacol Sci. Mar. 1997;18(3):67-70.

Moldoveanu et al., Poly-L-lysine as a potential mucosal adjuvant. Immunology Lett. 1999;69(1):62. Abstract #11.28.

Mollick et al., MUC1-like tandem repeat proteins are broadly immunogenic in cancer patients. Cancer Immun. Mar. 17, 2003;3:3. 17 pages.

Moody et al., Lipoxygenase inhibitors prevent lung carcinogenesis and inhibit non-small cell lung cancer growth. Exp Lung Res. Jul.-Aug. 1998;24(4):617-28.

Moraczewski et al., Using Hydrogen Bonding to Control Carbamate C—N Rotamer Equilibria. Org Chem. Oct. 16, 1998;63(21):7258-7262

Mosbech et al., [Allergy to insect stings] Ugeskr Laeger. Oct. 28, 1991;153(44):3067-71. Danish.

Muche et al., Imiquimod treatment of cutaneous T cell lymphoma. Journal of Investigative Dermatology. Jul. 2003;121(1):0975. Joint Meeting of the European Society for Dermatologi; Miami Beach, Florida, USA. Apr. 30-May 4, 2003. Abstract 0975.

Muller et al., An improved one-pot procedure for the synthesis of alkynes from aldehydes. Synlett. 1996;6:521-522.

Mutschler et al., 9.2 Anti-infectives. In: Drug Actions: Basic Principles and Therapeutic Aspects. 1995:515-80.

Muzio et al., Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol. Jun. 1, 2000;164(11):5998-6004.

Nagarajan et al., Condensed heterotricycles: synthesis of pyrazolo[3,4-c]quinoline derivatives. Indian Journal of Chemistry. 1992;31B:316-321.

Nagase et al., Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. JImmunol. Oct. 15, 2003;171(8):3977-82.

Nanjappan et al., An efficient synthesis of some 6-substituted 4,8-diaza-3,3,9,9-tetramethylundeca-2,10-dione dioximes (propylene amine oximes, PnAOs): Ligands for 99mTc complexes used in structure distribution relationship (SDR) studies. Tetrahedron. 1994;50(29):8617-32.

Ohana et al., Differential effect of adenosine on tumor and normal cell growth: focus on the A3 adenosine receptor. Journal of Cellular Physiology. Jan. 2001;186(1):19-23. Review.

O'Mahony et al., New patient-applied therapy for anogenital warts is rated favourably by patients. Ind J STD & AIDS. 2001;12:565-70. Osol et al., Chapter 27: Structure-Activity Relationship and Drug Design. In: Remington's Pharmaceutical Sciences. 16th Ed. Mach Publishing. 1980:420-35.

Ottonello et al., Sulphonamides as anti-inflammatory agents: old drugs for new therapeutic strategies in neutrophilic inflammation? Clin Sci (Lond). Mar. 1995;88(3):331-6.

Ozinsky et al., The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Nat. Acad. Sci. 2000; 97(25):13766-71.

Page et al., Advances in the pathogenesis of periodontitis: summary of developments, clinical implications and future directions. Periodontol 2000. Jun. 1997;14:216-48.

Park et al., Immunotherapy Cancer Treatment. Reprinted from Supportive Cancer Care, Rosenbaum et al. 2001. Available at http://www.cancersupportivecare.com/immunotherapy.html. Last accessed Jul. 13, 2010. 3 pages.

Park et al., Sodium Dithionite Reduction of Nitroarenes Using Viologen as an Electron Phase-Transfer Catalyst. Tetrahedron Lett. 1993;34(46):7445-46.

Patel et al., The necrotic venom of the brown recluse spider induces dysregulated endothelial cell-dependent neutrophil activation. Differential induction of GM-CSF, IL-8, and E-selectin expression. J Clin Invest. Aug. 1994;94(2):631-42.

Patrick et al., Paragraph 10.3: Drug optimization: strategies in drug design. In: An Introduction to Medicinal Chemistry. Oxford: Oxford University Press. Jan. 2005. 200-218.

Pavletic et al., Outcome of allogeneic stem cell transplantation for B cell chronic lymphocytic leukemia. Bone Marrow Transplant Apr. 2000;25(7):717-22.

Pawlas et al., Novel anionic annelation tactics for construction of fused heteroaromatic frameworks. 1. Synthesis of 4-substituted pyrazolo[3,4-c]quinolines, 9-substituted pyrazolo[3,4-c]quinolines, and 1,4-dihydrochromeno[4,3-c]pyrazoles. Org Chem. Jun. 15, 2001;66(12):4214-9.

Payvandi et al., Exogenous and Endogenous IL-10 Regulate IFN-α Production by Peripheral Blood Mononuclear Cells in Response to Viral Stimulation. J Immunol. 1998;160:5861-68.

Peschke et al., Synthesis and in vitro characterization of new growth hormone secretagogues derived from ipamorelin with dipeptidomimetic N-terminals. Eur J Med Chem. 1999;34:363-380. Peterson et al., The opioid-cytokine connection. J Neuroimmunol. 1998;83:63-69.

Phillips et al., Therapy of brown spider envenomation: a controlled trial of hyperbaric oxygen, dapsone, and cyproheptadine. Ann Emerg Med. Mar. 1995;25(3):363-8.

Pickersgill et al., Preparation of functionalized, conformationally constrained DTPA analogues from L- or D-serine and trans-4-hydroxy-L-proline. Hydroxymethyl substituents on the central acetic acid and on the backbone. J Org Chem. Jun. 30, 2000;65(13):4048-57.

Poljakovic et al., iNOS and COX-2 immunoreactivity in the mice bladder and kidney after bacterial instillation. Immunology Lett. 1999;69(1):122. Abstract #31.5.

Powell et al., Compendium of excipients for parenteral formulations. PDA J Pharm Sci Technol. Sep.-Oct. 1998;52(5):238-311.

Prelog et al., Cycloalkeno-pyridine. Helv Chem Acta. 1945;28:1684-93. German.

Rees et al., Brown recluse spider bites. A comparison of early surgical excision versus dapsone and delayed surgical excision. Ann Surg. Nov. 1985;202(5):659-63.

Regan et al., Activation of p38 MAPK by feline infectious peritonitis virus regulates pro-inflammatory cytokine production in primary blood-derived feline mononuclear cells. Virology. Feb. 5, 2009;384(1):135-43. Epub Dec. 5, 2008.

Rhodes, Discovery of immunopotentiatory drugs: current and future strategies. Clin Exp Immunol Dec. 2002;130(3):363-9.

Ribera et al., "Spontaneous" complete remissions in chronic lymphocytic leukemia: report of three cases and review of the literature. Blood Cells. 1987;12(2):471-79.

Ritter et al., A new reaction of nitriles; amides from alkenes and mononitriles. J Am Chem Soc. Dec. 1948;70(12):4045-8.

Rocca et al., Carbolines. Part VII. Ansidines, Convenient tools to synthesize fficien- β -carbolines. J Heterocyclic Chem. 1995;32:1171-1175.

Rocca et al., Connection between metalation and cross-coupling strategies. Anew convergent route to azacarbazoles. Tetrahedron. 1993;49(1):49-64.

Rollins, Chemokines. Blood. Aug. 1, 1997;90(3):909-28. Review. Rosenberg et al., Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA. Mar. 23-30, 1994;271(12):907-13.

Rothel et al., The use of recombinant ovine IL-1 beta and TNF-alpha as natural adjuvants and their physiological effects in vivo. Immunol Cell Biol. Apr. 1998;76(2):167-72.

Roy et al., QSAR of adenosine receptor antagonists II: exploring physicochemical requirements for selective binding of 2-arlypyrazolo[3,4-c] quinoline derivatives with adenosine A1 and A3 receptor subtypes. QSAR & Comb Sci. 2003;22:614-621.

OTHER PUBLICATIONS

Royals et al., Studies in mixed ester condensations. IV. Acylations with methyl dimethoxyacetate. J Am Chem Soc. 1956;78:4161-4164.

Rozman et al., Chronic lymphocytic leukemia. N Engl J Med. Oct. 19, 1995;333(16):1052-7.

Sakthivel et al. Direct SnAr amination of fluorinated imizazo[4,5-c]pyridine nucleosides: efficient synthesis of 3-fluoro-3-3-deazaadenosine analogs. Tetrahedron Letters. May 2005;46(22):3883-3887.

Salaun et al., TLR3 Can Directly Trigger Apoptosis in Human Cancer Cells. J of Immunology. 2006;176:4894-901.

Salemink, Uber 2-Propyl-1- Und 2-Propyl-Desaza-Adenin. Recueil. 1961;80:545-55. German.

Sambhi et al., Local production of tumor necrosis factor encoded by recombinant vaccinia virus is effective in controlling viral replication in vivo. Proc Natl Acad Sci U S A. May 1, 1991;88(9):4025-9.

Sams et al., Necrotic arachnidism. J Am Acad Dermatol. Apr. 2001;44(4):561-73; quiz 573-6.

Sauder et al., Randomized, Single-Blind, Placebo-Controlled Study of Topical Application of the Immune Response Modulator Resiquimod in Healthy Adults. Antimicrobial Agents Chemo. 2003;47(12):3846-52.

Scheerlinck, Genetic adjuvants for DNA vaccines. Vaccine. Mar. 21, 2001;19(17-19):2647-56.

Scheuer et al., Application of the Ritter reaction to mesityl oxide and chalcone. J Am Chem Soc. 1957;22:674-676.

Schofield et al., Reply. Low-Dose Interferon-alpha in Chronic Myeloid Leukemia. Ann Internal Med. 1995;122(9):728-29. 1 page. Schwandner et al., Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem. Jun. 18, 1999;274(25):17406-9.

Seeman et al., Steric and Conformational Effects in Nicotine Chemistry. J Org Chem. 1981;46:3040-48.

Serrat et al., A highly efficient and straightforward stereoselective synthesis of novel chiral α -acetylenic ketones. Tetrahedron: Assymmetry. 1999;10:3417-30.

Severa et al., Sensitization to TLR7 agonist in IFN-beta-preactivated dendritic cells. J Immunol. May 15, 2007;178(10):6208-16.

Seymour et al., Cellular immunity and hypersensitivity as components of periodontal destruction. Oral Dis. Mar. 1996;2(1):96-101. Review.

Shelburne et al., Quantitation of Bacteroids forsythus in subgingival plaque comparison on immunoassay and quantitative polymerase chain reaction. J Microbiol Methods. 2000;39:97-107.

Sidky et al., Inhibition of murine tumor growth by an interferoninducing imidazoquinolinamine. Cancer Res. Jul. 1, 1992;52(13):3528-33.

Siegal et al., The nature of the principal type 1 interferon-producing cells in human blood. Science. Jun. 11, 1999;284(5421):1835-7.

Sletzinger et al., The Synthesis of Isomethadone. J Am Chem Soc. 1952;74:5619-20.

Smith et al., The role of polymorphonuclear leukocytes in the lesion caused by the venom of the brown spider, *Loxosceles recluse*. Lab Invest. Jan. 1970;22(1):90-3.

Sofina et al., C: Possibility of Predicting the Spectrum of Antitumor Effect of Drugs on the Basis of Experimental Data. Experimental evaluation of antitumor drugs in the USA and USSR and dinical correlations. NCI Monograph 55. NIH Publication No. 80-1933. 1980:76-8

Sommer et al., Recent Findings on How Proinflammatory Cytokines Cause Pain: Peripheral Mechanisms in Inflammatory and Neuropathic Hyperalgesia. Neurosci Letts. 2004;361:184-87.

Sonogashira et al., A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, lodoarenes, and bromopyridines. Tetrahedron Letts. 1975;50:4467-4470.

Soria et al., Effect of food on the pharmacokinetics and bioavailability of oral imiquimod relative to a subcutaneous dose. Int J Clin Pharmacol Ther. Oct. 2000;38(10):476-81.

Spaner et al., A phase I/II trial of TLR-7 agonist immunotherapy in chronic lymphocytic leukemia. Leukemia. 2010; 24:222-26.

Spaner et al., Immunomodulatory effects of Toll-like receptor-7 activation on chronic lymphocytic leukemia cells. Leukemia. Feb. 2006;20(2):286-95.

Spaner et al., Toll-like receptor agonists in the treatment of chronic lymphocytic leukemia. Leukemia. Jan. 2007;21(1):53-60. Epub Oct. 26, 2006.

Spivey et al., Configurationally stable biaryl analogues of 4-(dimethylamino)pyridine: A novel class of chiral nucleophilic catalysts. J Org Chem. 1999;64:9430-9443.

Spruance et al., Application of a topical immune response modifier, resiquimod gel, to modify the recurrence rate of recurrent genital herpes: a pilot study. J Infect Dis. Jul. 15, 2001;184(2):196-200. Epub Jun. 8, 2001.

Stack, Images in clinical medicine. Latrodectus mactans. N Engl J Med. Jun. 5, 1997;336(23):1649.

Stanley, Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. Clin Exp Dermatol. Oct. 2002;27(7):571-7. Review.

Stashenko et al., Periapical inflammatory responses and their modulation. Crit Rev Oral Biol Med. 1998;9(4):498-521.

Steele et al., Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prey. May 1999;8(5):467-83.

Steele et al., Potential use of lipoxygenase inhibitors for cancer chemoprevention. Expert Opin Investig Drugs. Sep. 2000;9(9):2121-38.

Steinmann et al., Topical imiquimod treatment of a cutaneous melanoma metastasis. J Am Aced Dermatol. Sep. 2000;43(3):555-6.

Stewart et al., Synthesis of a Carba-analog of S-Acetyl Coenzyme A, Acetonyl-dethio Coenzyme A; an Effective Inhibitor of Citrate Synthase. Liebigs Ann Chem. 1978:57-65.

Stillings et al., Substituted 1,3,4-thiadiazoles with anticonvulsant activity. 2. Aminoalkyl derivatives. J Med Chem. Nov. 1986;29(11):2280-4.

Strandtmann et al., Reaction of cyclic β-diketones with 3,4-dihydroisoquinolines and related compounds. Preparation and anti-cancer activity of 2-substituted 1,3-cyclohexanediones. J Med Chem. Nov. 1967;10(6):1063-5.

Stringfellow, Induction of interferon with low molecular weight compounds: fluorenone esters, ethers (tilorone), and pyrimidinones. Methods Enzymol. 1981;78(Pt A):262-84.

Ströher et al., Progress towards the treatment of Ebola haemorrhagic fever. Expert Opin Investig Drugs. Dec. 2006;15(12):1523-35.

Surrey et al., The Synthesis of Some 3-Nitro- and 3-Amino-4-dialkylaminoalkylaminoquinoline Derivatives. J Am Chem Soc. 1951;73:2413-16.

Takeichi et al., Cytokine profiles of T-lymphocytes from gingival tissues with pathological pocketing. J Dent Res. Aug. 2000;79(8):1548-55.

Takeshita et al., Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9. Semin Immunol. Feb. 2004;16(1):17-22.

Takeuchi et al., Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol. Jul. 2001;13(7):933-40.

Temple, Antimitotic agents: synthesis of imidazo[4,5-c]pyridin-6-ylcarbamates and imidazo[4,5-b]pyridin-5-ylcarbamates. J Med Chem. Feb. 1990;33(2):656-61.

Temple et al., Potential anticancer agents: 5-(N-substituted-aminocarbonyl)- and 5-(N-substituted-aminothiocarbonyl)-5,6,7,8-tetrahydrofolic acids. J Med Chem. Mar. 1988;31(3):697-700.

Testerman et al., Cytokine induction by the immunomodulators imiquimod and S-27609. J Leukoc Biol. Sep. 1995;58(3):365-72.

Thesing et al., [Darstellung and Eigenschaften des Δ^1 -Pyrrolin-N-oxyds.]. Chem Ber. 1959;92:1748-55. German.

Thiruvikraman et al., Synthesis and reactions of pyrazolo-[3,4-c]quinoline derivatives. Indian Journal of Chemistry. 1987;26B:695-696

Tomai et al., Imiquimod: in vivo and in vitro characteristics and toxicology. In: Cutaneous Infection and Therapy. Aly et al., eds. Marcel Dekker, Inc., New York. 1997:405-15.

OTHER PUBLICATIONS

Tomic et al., Sensitization of IL-2 Signaling through TLR-7 Enhances B Lymphoma Cell Immunogenicity. J Immunol. 2006;176:3830-39.

Tomioka et al., Asymmetric Alkylation of α -Alkyl β -Keto Esters. J Am Chem Soc. 1984;106:2718-19.

Totterman et al., Phorbol ester-induced differentiation of chronic lymphocytic leukaemia cells. Nature. Nov. 13, 1980;288(5787):176-8.

Tracy et al., Studies in the Pyridine Series. II. Synthesis of 2-Methyl-3-(β-Hydroxyethyl)pyridine and of the Pyridine Analog of Thiamine (Vitamin B2). J Org Chem. 1941;6:54-62.

Uno et al., TNF-related apoptosis-inducing ligand (TRAIL) frequently induces apoptosis in Philadelphia chromosome-positive leukemia cells. Blood. May 1, 2003;101(9):3658-67. Epub Dec. 27, 2002

Urosevic et al., Imiquimod treatment induces expression of opioid growth factor receptor: a novel tumor antigen induced by interferonalpha? Clin Cancer Res. Aug. 1, 2004;10(15):4959-70.

Van De Kerhof, New Immunomodulatory Drugs. In: Skin and Environment: Perception and Protection. Ring et al., eds., 10th EADV Congress, Oct. 10-14, Munich, Germany. 2001:1:343-48.

Vasilakos et al., Adjuvant Activities of Immune Response Modifier R-848: Comparison with CoG ODN. Cell Immunol. 2000;204:64-74

Vieweg et al., Tumor vaccines: from gene therapy to dendritic cells—the emerging frontier. Urol Clin North Am. Aug. 2003;30(3):633-43. Vilcek, The cytokines: An overview. In: The Cytokine Handbook, Fourth Ed. M. Lotze and A.W. Thompson (eds.), 2003;1:3-14.

Volhardt, 18-5. Amides: The Least-Reactive Carboxylic Acid Derivatives. Organic Chemistry. 1987:813.

Vollmer et al., Highly immunostimulatory CpG-free oligodeoxynucleotides for activation of human leukocytes. Antisense Nucleic Acid Drug Dev. Jun. 2002;12(3):165-75.

Wagner et al., Induction of cytokines in cynomolgus monkeys by the immune response modifiers, imiquimod, S-27609 and S-28463. Cytokine. Nov. 1997;9(11):837-45.

Wagner et al., Modulation of TH1 and TH2 Cytokine Production with the Immune Response Modifiers, R-848 and Imiguimod. Cellular Immunology. 1999;191:10-19.

Wang, Structure and Chemistry of 4-Hydroxy-6-methyl-2-pyridone. J Heterocyclic Chem. 1970;7:389-92.

Warren et al., Macrophage Growth Factor CSF-1 Stimulates Human Monocyte Production of Interferon, Tumor Necrosis Factor, and Colony Stimulating Activity. J Immunol. 1986;137(7):2281-85.

Wasserman et al., Loxoscelism and necrotic arachnidism. J Toxicol Clin Toxicol. 1983-1984;21(4-5):451-72.

Wedlock et al., Physiological effects and adjuvanticity of recombinant brushtail possum TNF-alpha. Immunol Cell Biol. Feb. 1999;77(1):28-33.

Wells, Additivity of Mutational Effects in Proteins. Biochemistry. 1990;29(37):8509-17.

Wermuth, Molecular Variations Based on Isosteric Replacements. Practice of Medicinal Chemistry. 1996: 203-37.

Wexler et al., Accurate identification of experimental pulmonary metastases. J Natl Cancer Inst. Apr. 1966;36(4):641-5.

Wibaut et al., Syntheses of 3,4-Dimethylpyridine, 2,3-Dimethylpridine and 2-Methyl-3-Ethylpyridine. Rec Trav Chim. 1944;63:231-38.

Wierda et al., CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood. Nov. 1, 2000;96(9):2917-24.

Wieseler-Frank et al., Central proinflammatory cytokines and pain enhancement. Neurosignals. 2005;14(4):166-74.

Williams et al., Grignard Reactions to Chiral Oxazolidine Aldehydes. Tetrahedron. 1996;52:11673-94.

Wilson et al., Spiders and spider bites. Dermatol Clin. Apr. 1990;8(2):277-86.

Wozniak et al., The amination of 3-nitro-1, 5-naphthyridines by liquid ammonia/potassium permanganate 1,2. A new and convenient animation method. J. Royal Netherlands Chem Soc. Dec. 12, 1983(102):511-3.

Wright et al., Clinical presentation and outcome of brown recluse spider bite. Ann Emerg Med. Jul. 1997;30(1):28-32.

Wu et al., Murine B16 melanoma vaccination-induced tumor immunity: identification of specific immune cells and functions involved. J Interferon Cytokine Res. Dec. 2001;21(12):1117-27.

Yamamoto et al., Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature. Nov. 21, 2002;420(6913):324-9.

Yeung-Yue et al., The management of herpes simplex virus infections. Curr Opin Infect Dis. Apr. 2002;15(2):115-22.

Yutilov et al., Synthesis and some reactions of 4-nitroimidazo[4-5-c]pyridin-2-ones. CAPLUS English Abstract DN 91:175261. VINITI.1978:1193-78. Abstract Only.

Zagon et al., Immunoelectron microscopic localization of the opioid growth factor receptor (OGFr) and OGF in the cornea. Brain Res. 2003;967:37-47.

Zagon et al., Opioids and the apoptotic pathway in human cancer cells. Neuropeptides. 2003;37:79-88.

Zagon et al., The biology of the opioid growth factor receptor (OGFr). Brain Res Rev. Feb. 2002;38(3):351-76. Review.

Zagon et al., The expression and function of the OGF-OGFr axis—a tonically active negative regulator of growth—in COS cells. Neuropeptides. Oct. 2003;37(5):290-7.

Zambon, Periodontal diseases: microbial factors. Ann Periodontol. Nov. 1996;1(1):879-925.

Zarubin et al., Theoretical Study of Antagonists and Inhibitors of Mammalian Adenosine Deaminase: I. Adenosine and Its Aza- and Deazaanalogues. Russ J Bioorg Chem. 2002;28(4):284-92.

Zhang et al., Structural features of azidopyridinyl neonicotinoid probes conferring high affinity and selectivity for mammalian alpha4beta2 and *Drosophila nicotinic* receptors. J Med Chem. Jun. 20, 2002;45(13):2832-40.

Zhu et al., Inhibition of murine dendritic cell activation by synthetic phosphorothioate oligodeoxynucleotides. J Leukoc Biol. Dec. 2002;72(6):1154-63.

Zhu et al., Inhibition of murine macrophage nitric oxide production by synthetic oligonucleotides. J Leukoc Biol. Apr. 2002;71(4):686-94.

Ziegler-Heitbrock et al., Favorable response of early stage B CLL patients to treatment with IFN-alpha 2. Blood. May 1, 1989;73(6):1426-30.

Zyryanov et al., Heterocyclization of 1-(2'-Carbethoxyphenyl)-5-Methyltetrazole. Chemistry of Heterocylic Compounds. English Edition. 1981;16(12):1286-88.

* cited by examiner

AQUEOUS GEL FORMULATIONS CONTAINING IMMUNE RESPONSE MODIFIERS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage filing under 35 U.S.C. §371 of PCT International application PCT/US2006/004201 designating the United States of America, and filed Feb. 3, 10 2006. This application claims the benefit under 35 U.S.C. §119 of U.S. provisional application Ser. No. 60/650,030, filed Feb. 4, 2005.

BACKGROUND

Many imidazoquinoline amine, imidazopyridine amine, 6,7-fused cycloalkylimidazopyridine amine, 1,2-bridged imidazoquinoline amine, thiazoloquinoline amine, oxazoloquinoline amine, thiazolopyridine amine, oxazolopyridine amine, imidazonaphthyridine amine, imidazotetrahydronaphthyridine amine, and thiazolonaphthyridine amine compounds have demonstrated potent immunostimulating, antiviral and antitumor (including anticancer) activity, and have also been shown to be useful as vaccine adjuvants and 25 for the treatment of TH2-mediated diseases. These compounds are hereinafter collectively referred to as "IRM" (immune response modifier) compounds.

The mechanism for the immunostimulatory activity of these IRM compounds is thought to be due in substantial part 30 to enhancement of the immune response by induction of various important cytokines (e.g., interferons, interleukins, tumor necrosis factor, etc.). Such compounds have been shown to stimulate a rapid release of certain monocyte/macrophage-derived cytokines and are also capable of stimulat- 35 ing B cells to secrete antibodies, which play an important role in these IRM compounds' activities. One of the predominant immunostimulating responses to these compounds is the induction of interferon (IFN)-a production, which is believed to be very important in the acute antiviral and antitumor 40 activities seen. Moreover, up regulation of other cytokines such as, for example, tumor necrosis factor (TNF), Interleukin-1 (IL-1), IL-6, and IL-12 also have potentially beneficial activities and are believed to contribute to the antiviral and antitumor properties of these compounds.

Although some of the beneficial effects of IRMs are known, the ability to provide therapeutic benefit via topical application of an IRM compound for treatment of a particular condition at a particular location may be hindered by a variety of factors. These factors include irritation of the dermal or mucosal tissue to which the formulation is applied, ciliary clearance of the formulation, formulation wash away, insolubility and/or degradation of the IRM compound in the formulation, physical instability of the formulation (e.g., separation of components, thickening, precipitation/agglomeration of active ingredient, and the like), and poor permeation, for example. Accordingly, there is a continuing need for new methods and formulations to provide the greatest therapeutic benefit from this class of compounds.

SUMMARY

The present invention is directed to aqueous gel formulations, kits, and methods of use. Herein, a "gel" is a composition that is substantially free of oil (and hence, is not a cream 65 or a lotion). Preferably, gels of the present invention have a viscosity of at least 1000 Centipoise (cps) at room tempera-

2

ture (i.e., about 25° C.). Preferably, gels of the present invention have a viscosity of no greater than 50,000 cps, and more preferably no greater than 30,000 cps.

Aqueous gels are not easily formed using certain IRMs due to the low intrinsic aqueous solubility of the free base (typically less than 500 μ g/mL at 25° C.). As a result, a cosolvent is typically used or a salt of the IRM is prepared in situ. This can result in the need for negatively charged thickeners, particularly two negatively charged thickeners, to provide the desirable viscosity. In preferred embodiments of the present invention, the negatively charged thickeners are not covalently bonded to the IRM.

In one embodiment, such aqueous gels include: water; an immune response modifier (IRM) other than 1-(2-methylpro-pyl)-1H-imidazo[4,5-c][1,5]naphthyridin-4-amine; a pharmaceutically acceptable acid; a water-miscible cosolvent; and a thickener system including a negatively charged thickener; wherein the aqueous gel has a viscosity of at least 1000 cps at 25° C.

In one embodiment, such aqueous gels are prepared by a method that includes combining components including: water; an immune response modifier (IRM) other than 1-(2-methylpropyl)-1H-imidazo[4,5-c][1,5]naphthyridin-4-amine, or a salt thereof; a water-miscible cosolvent; and a thickener system including a negatively charged thickener; wherein the aqueous gel has a viscosity of at least 1000 cps at 25° C.

Gel formulations of the present invention can provide desirable vehicles for an IRM compound and can allow for easier manufacture and increased residence time of an IRM compound, particularly on dermal and/or mucosal tissue.

Furthermore, the use of negatively charged thickeners in the aqueous gels of the present invention reduces systemic exposure to the drug and hence reduces systemic levels of cytokines. This is desirable for many conditions for which treatment at a particular location (e.g., cervical dysplasia) is preferred. The use of a combination of negatively charged thickeners (i.e., at least two) is desirable when higher levels of cosolvents are used due to the low solubility of the drug (whether in free base or salt form) in water. This results in an aqueous gel that reduces systemic exposure and is physically stable.

In certain embodiments, the immune response modifier is selected from the group consisting of imidazoquinoline tetrahydroimidazoquinolines, imidazopyridine 45 amines. amines, 6,7-fused cycloalkylimidazopyridine amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines; oxazoloquinoline amines; thiazoloquinoline amines; amines; thiazolopyridine oxazolopyridine amines; oxazolonaphthyridine amines; thiazolonaphthyridine amines; pyrazolopyridine amines; pyrazoloquinoline amines; tetrahydropyrazologuinoline amines; pyrazolonaphthyridine amines; tetrahydropyrazolonaphthyridine amines; 1H-imidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines; and combinations

The present invention also provides methods of using the formulations of the present invention. In one embodiment, the present invention provides a method for delivering an IRM compound to mucosal tissue of a subject, the method including applying an aqueous gel of the present invention. Preferably, the mucosal tissue is associated with a condition selected from the group consisting of a cervical dysplasia, a papilloma virus infection of the cervix, a low-grade squamous intraepithelial lesion, a high-grade squamous intraepithelial lesion, atypical squamous cells of undetermined sig-

nificance, a cervical intraepithelial neoplasia, an atopic allergic response, allergic rhinitis, a neoplastic lesion, and a premalignant lesion.

In another method, the aqueous gels of the present invention can be used to treat a dermal and/or mucosal condition in 5 a subject in need thereof. The method includes applying an aqueous gel of the invention to the affected area of the subject. The present invention also provides kits that include a barrel type applicator and an aqueous gel of the present invention, which can be in a separate container or prefilled in the barrel type applicator.

The terms "comprises" and variations thereof do not have a limiting meaning where these terms appear in the description and claims.

As used herein, "a," "an," "the," "at least one," and "one or 15 more" are used interchangeably. Thus, for example, an aqueous formulation that comprises "an" immune response modifier can be interpreted to mean that the formulation includes "one or more" immune response modifiers. Similarly, a formulation comprising "a" preservative can be interpreted to 20 tissue is on the cervix and the associated condition is selected mean that the formulation includes "one or more" preserva-

Also herein, the recitations of numerical ranges by endpoints include all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, etc.).

The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The description that follows more particularly exemplifies illustrative embodiments. In several places throughout the application, guidance 30 is provided through lists of examples, which examples can be used in various combinations. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list.

DETAILED DESCRIPTION OF ILLUSTRATIVE **EMBODIMENTS**

The present invention provides aqueous gel formulations, kits, and methods of use. Such gels are compositions that are 40 substantially free of oil (and hence, they are not creams or lotions). Preferably, gels of the present invention have a viscosity of at least 1000 Centipoise (cps) at 25° C. Preferably, gels of the present invention have a viscosity of no greater than 50,000 cps, and more preferably no greater than 30,000 45

In one embodiment, such aqueous gels include: water; an immune response modifier (IRM) other than 1-(2-methylpropyl)-1H-imidazo[4,5-c][1,5]naphthyridin-4-amine; a pharmaceutically acceptable acid; a water-miscible cosolvent; 50 and a thickener system including a negatively charged thickener (preferably, at least two negatively charged thickeners, which are typically of different charge density); wherein the aqueous gel has a viscosity of at least 1000 cps at 25° C.

In one embodiment, such aqueous gels are prepared by a 55 method that includes combining components including: water; an immune response modifier (IRM) other than 1-(2methylpropyl)-1H-imidazo[4,5-c][1,5]naphthyridin-4amine, or a salt thereof; a water-miscible cosolvent; and a thickener system including a negatively charged thickener 60 (preferably, at least two negatively charged thickeners, which are typically of different charge density); wherein the aqueous gel has a viscosity of at least 1000 cps at 25° C.

The immune response modifier is substantially completely dissolved at a therapeutic level (i.e., therapeutically effective 65 amount) in the formulation at room temperature. This amount is effective to treat and/or prevent a specified condition. In

general, the amount of IRM present in an aqueous gel formulation of the invention will be an amount effective to provide a desired physiological effect, e.g., to treat a targeted condition (e.g., reduce symptoms of allergic rhinitis), to prevent recurrence of the condition, or to promote immunity against the condition. For certain embodiments, an amount effective to treat or inhibit a viral infection is an amount that will cause a reduction in one or more manifestations of viral infections, such as viral load, rate of virus production, or mortality as compared to untreated control animals.

In certain methods of the present invention, the mucosal tissue is associated with a condition selected from the group consisting of a cervical dysplasia, a papilloma virus infection of the cervix, a low-grade squamous intraepithelial lesion, a high-grade squamous intraepithelial lesion, atypical squamous cells of undetermined significance, a cervical intraepithelial neoplasia, an atopic allergic response, allergic rhinitis, a neoplastic lesion, and a premalignant lesion.

In certain methods of the present invention, the mucosal from the group consisting of cervical dysplasia, high-grade squamous intraepithelial lesions, low-grade squamous intraepithelial lesions, and atypical squamous cells of undetermined significance with the presence of high risk HPV.

In certain methods of the present invention, the mucosal tissue is on the cervix and the associated condition is atypical squamous cells of undetermined significance with the presence of high risk HPV.

In certain methods of the present invention, the mucosal tissue is on the cervix and the associated condition is a papilloma virus infection of the cervix.

The amount of IRM compound that will be therapeutically effective in a specific situation will depend on such things as the dosing regimen, the application site, the particular formu-35 lation and the condition being treated. As such, it is generally not practical to identify specific administration amounts herein; however, those skilled in the art will be able to determine appropriate therapeutically effective amounts based on the guidance provided herein, information available in the art pertaining to these compounds, and routine testing.

In some embodiments, the methods of the present invention include administering sufficient formulation to provide a dose of an IRM compound of, for example, from 100 ng/kg to 50 mg/kg to the subject, although in some embodiments the methods may be performed by administering an IRM compound in concentrations outside this range. In some of these embodiments, the method includes administering sufficient formulation to provide a dose of an IRM compound of from 10 μg/kg to 5 mg/kg to the subject, for example, a dose of from 100 μg/kg to 1 mg/kg.

In certain embodiments of the formulations of the invention, the amount or concentration of an IRM compound is at least 0.0001% by weight (wt-%), in other embodiments, at least 0.001 wt-%, in other embodiments at least 0.01 wt-%, and in other embodiments at least 0.1 wt-%, based on the total weight of the aqueous gel. In certain embodiments, the amount of an IRM compound is no greater than 7 wt-%, in other embodiments no greater than 5 wt-%, in other embodiments no greater than 3 wt-%, in other embodiments no greater than 2 wt-%, and in other embodiments no greater than 1 wt-%, based on the total weight of the aqueous gel.

One or more IRM compounds may be present in the formulation as the sole therapeutically active ingredient or in combination with other therapeutic agents. Such other therapeutic agents may include, for example, antibiotics, such as penicillin or tetracycline, corticosteroids, such as hydrocortisone or betamethasone, nonsteroidal antiinflammatories,

such as flurbiprofen, ibuprofen, or naproxen, or antivirals, such as acyclovir or valcyclovir.

In some embodiments, the above-described formulations are particularly advantageous for application for a period of time sufficient to obtain a desired therapeutic effect without 5 undesired systemic absorption of the IRM compound.

The IRM of the present invention is present in the gel formulations in combination with a pharmaceutically acceptable acid. Such acid is preferably present in a stoichiometric amount relative to the IRM.

A wide range of pharmaceutically acceptable acids can be used to form salts of IRMs. Examples of such acids are described in Berge et al., J. Pharm. Sciences, 66, 1-19 (1977). Preferred pharmaceutically acceptable acids (e.g., suitable for incorporation in the gels of the present invention or for 15 forming salts of the IRM of the present invention) include, for example, an alkylsulfonic acid, an arylsulfonic acid, a carboxylic acid, a halo acid, sulfuric acid, phosphoric acid, a dicarboxylic acid, a tricarboxylic acid, and combinations thereof. More preferred pharmaceutically acceptable acids 20 include acetic acid, hydrobromic acid, hydrochloric acid, D-gluconic acid, D- and L-lactic acid, methanesulfonic acid, ethanesulfonic acid, propionic acid, benzenesulfonic acid, citric acid, phosphoric acid, succinic acid, sulfuric acid, Dand L-tartaric acid, p-toluenesulfonic acid, and combinations 25 thereof. Particularly preferred salts of the IRM are alkylsulfonate salts (e.g., ethanesulfonate or methanesulfonate).

An IRM compound, and salts thereof, described herein include any of their pharmaceutically acceptable forms, such as isomers (e.g., diastereomers and enantiomers), solvates, 30 polymorphs, and the like. In particular, if a compound is optically active, the invention specifically includes the use of each of the compound's enantiomers as well as racemic combinations of the enantiomers. Also, if a salt is optically active, the invention specifically includes the use of each of the salt's 35 enantiomers as well as racemic combinations of the enantiomers.

IRM Compounds

Preferred IRM compounds suitable for use in the formulations of the invention preferably include compounds having a 40 2-aminopyridine fused to a five membered nitrogen-containing heterocyclic ring. Other small organic molecules known to function as IRM compounds are also suitable for use in the formulations of the invention.

Certain IRMs are small organic molecules (e.g., molecular 45 weight under about 1000 Daltons, preferably under about 500 Daltons, as opposed to large biologic protein, peptides, and the like) such as those disclosed in, for example, U.S. Pat. Nos. 4,689,338; 4,929,624; 5,266,575; 5,268,376; 5,346,905; 5,352,784; 5,389,640; 5,446,153; 5,482,936; 5,756,747; 50 6,110,929; 6,194,425; 6,331,539; 6,376,669; 6,451,810; 6,525,064; 6,541,485; 6,545,016; 6,545,017; 6,573,273; 6,656,938; 6,660,735; 6,660,747; 6,664,260; 6,664,264; 6,664,265; 6,667,312; 6,670,372; 6,677,347; 6,677,348; 6,677,349; 6,683,088; 6,756,382; 6,797,718; and 6,818,650; 55 U.S. Patent Publication Nos. 2004/0091491; 2004/0147543; and 2004/0176367; and International Publication Nos. WO 2005/18551, WO 2005/18556, WO 2005/20999, WO 2005/ 032484, WO 2005/048933, WO 2005/048945, WO 2005/ 051317, WO 2005/051324, WO 2005/066169, WO 2005/60 propylbutyramide. 066170, WO 2005/066172, WO 2005/076783, WO 2005/ 079195, and WO2005/094531.

IRM compounds suitable for use in the invention preferably include compounds having a 2-aminopyridine fused to a five membered nitrogen-containing heterocyclic ring. Such 65 compounds include, for example, imidazoquinoline amines including but not limited to substituted imidazoquinoline

6

amines such as, for example, amide substituted imidazoquinoline amines, sulfonamide substituted imidazoquinoline amines, urea substituted imidazoquinoline amines, aryl ether substituted imidazoquinoline amines, heterocyclic ether substituted imidazoquinoline amines, amido ether substituted imidazoquinoline amines, sulfonamido ether substituted imidazoquinoline amines, urea substituted imidazoquinoline ethers, thioether substituted imidazoquinoline amines, hydroxylamine substituted imidazoquinoline amines, oxime substituted imidazoquinoline amines, 6-, 7-, 8-, or 9-aryl, heteroaryl, aryloxy or arylalkyleneoxy substituted imidazoquinoline amines, and imidazoquinoline diamines; tetrahydroimidazoquinoline amines including but not limited to amide substituted tetrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroimidazoguinoline amines, urea substituted tetrahydroimidazoquinoline amines, aryl ether substituted tetrahydroimidazoquinoline amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amido ether substituted tetrahydroimidazoquinoline amines, sulfonamido ether substituted tetrahydroimidazoguinoline amines, urea substituted tetrahydroimidazoquinoline ethers, thioether substituted tetrahydroimidazoquinoline amines, hydroxylamine substituted tetrahydroimidazoquinoline amines, oxime substituted tetrahydroimidazoquinoline amines, and tetrahydroimidazoquinoline diamines; imidazopyridine amines including but not limited to amide substituted imidazopyridine amines, sulfonamide substituted imidazopyridine amines, urea substituted imidazopyridine amines, aryl ether substituted imidazopyridine amines, heterocyclic ether substituted imidazopyridine amines, amido ether substituted imidazopyridine amines, sulfonamido ether substituted imidazopyridine amines, urea substituted imidazopyridine ethers, and thioether substituted imidazopyridine amines; 1,2-bridged imidazoquinoline amines; 6,7-fused cycloalkylimidazopyridine amines; imidazonaphthyridine amines; tetrahydroimidazonaphthyridine amines; oxazoloquinoline amines; thiazoloquinoline amines; oxazolopyridine amines; thiazolopyridine amines; oxazolonaphthyridine amines; thiazolonaphthyridine amines; pyrazolopyridine amines; pyrazoloquinoline amines; tetrahydropyrazoloquinoline amines; pyrazolonaphthyridine amines; tetrahydropyrazolonaphthyridine amines; and 1H-imidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines.

In certain embodiments of the present invention, the IRM is an imidazoquinoline amine.

In certain embodiments of the present invention, the IRM is 1-(2-methylpropyl)-1H-imidazo[4,5-c]quinolin-4-amine (imiquimod).

In certain embodiments of the present invention, the IRM is 2-propylthiazolo[4,5-c]quinolin-4-amine.

In certain embodiments of the present invention, IRM is an amide substituted imidazoquinoline amine. Preferably, the IRM is selected from the group consisting of 3-(4-amino-2-propyl-1H-imidazo[4,5-c]quinolin-1-yl)propionamide, N-[2-(4-amino-7-benzyloxy-2-ethoxymethyl-1H-imidazo [4,5-c]quinolin-1-yl)-1,1-dimethylethyl]acetamide, and 4-(4-amino-2-propyl-1H-imidazo[4,5-c]quinolin-1-yl)-N-propylbutyramide.

In certain embodiments of the present invention, the IRM is N-[2-(4-amino-7-benzyloxy-2-ethoxymethyl-1H-imidazo [4,5-c]quinolin-1-yl)-1,1-dimethylethyl]acetamide.

In certain embodiments of the present invention, the IRM is a urea substituted imidazoquinoline amine. Preferably, the IRM is N-[2-(4-amino-2-ethoxymethyl-1H-imidazo[4,5-c] quinolin-1-yl)ethyl]-N'-isopropylurea.

7

Exemplary IRM Compounds

In certain embodiments of the present invention the IRM compound can be chosen from 1H-imidazo[4,5-c]quinolin-4-amines defined by one of Formulas I-V below:

$$R_{11}$$

wherein

 R_{11} is selected from alkyl of one to ten carbon atoms, hydroxyalkyl of one to six carbon atoms, acyloxyalkyl wherein the acyloxy moiety is alkanoyloxy of two to four 20 carbon atoms or benzoyloxy, and the alkyl moiety contains one to six carbon atoms, benzyl, (phenyl)ethyl and phenyl, said benzyl, (phenyl)ethyl or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from alkyl of one to four carbon 25 atoms, alkoxy of one to four carbon atoms and halogen, with the proviso that if said benzene ring is substituted by two of said moieties, then said moieties together contain no more than six carbon atoms:

 $\rm R_{21}$ is selected from hydrogen, alkyl of one to eight carbon $\rm ^{30}$ atoms, benzyl, (phenyl)ethyl and phenyl, the benzyl, (phenyl) ethyl or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from alkyl of one to four carbon atoms, alkoxy of one to four carbon atoms and halogen, with the proviso that when the $\rm ^{35}$ benzene ring is substituted by two of said moieties, then the moieties together contain no more than six carbon atoms; and

each R_1 is independently selected from alkoxy of one to four carbon atoms, halogen, and alkyl of one to four carbon atoms, and n is an integer from 0 to 2, with the proviso that if 40 n is 2, then said R_1 groups together contain no more than six carbon atoms;

substituent being optionally substituted on the benzene ring by one or two moieties independently selected from straight chain or branched chain alkyl containing one to four carbon atoms, straight chain or branched chain alkoxy containing one to four carbon atoms, and halogen, with the proviso that when the benzene ring is substituted by two such moieties, then the moieties together contain no more than six carbon atoms; and

8

each R_2 is independently selected from straight chain or branched chain alkoxy containing one to four carbon atoms, halogen, and straight chain or branched chain alkyl containing one to four carbon atoms, and n is an integer from zero to 2, with the proviso that if n is 2, then said R_2 groups together contain no more than six carbon atoms;

$$R_{23}$$
 R_{23}

III

wherein

 R_{23} is selected from hydrogen, straight chain or branched chain alkyl of one to eight carbon atoms, benzyl, (phenyl) ethyl and phenyl, the benzyl, (phenyl)ethyl or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from straight chain or branched chain alkyl of one to four carbon atoms, straight chain or branched chain alkoxy of one to four carbon atoms, and halogen, with the proviso that when the benzene ring is substituted by two such moieties, then the moieties together contain no more than six carbon atoms; and

each R_3 is independently selected from straight chain or branched chain alkoxy of one to four carbon atoms, halogen, and straight chain or branched chain alkyl of one to four carbon atoms, and n is an integer from zero to 2, with the proviso that if n is 2, then said R_3 groups together contain no more than six carbon atoms;

$$\begin{array}{c|c}
NH_2 & \text{II } 45 \\
N & N \\
R_{2)n} & N \\
R_{12} & N
\end{array}$$

wherein

 $\rm R_{12}$ is selected from straight chain or branched chain alkenyl containing two to ten carbon atoms and substituted straight chain or branched chain alkenyl containing two to ten carbon atoms, wherein the substituent is selected from straight chain or branched chain alkyl containing one to four 60 carbon atoms and cycloalkyl containing three to six carbon atoms; and cycloalkyl containing three to six carbon atoms substituted by straight chain or branched chain alkyl containing one to four carbon atoms; and

R₂₂ is selected from hydrogen, straight chain or branched 65 chain alkyl containing one to eight carbon atoms, benzyl, (phenyl)ethyl and phenyl, the benzyl, (phenyl)ethyl or phenyl

55 wherei

 R_{14} is —CHR $_xR_y$ wherein R_y is hydrogen or a carbon-carbon bond, with the proviso that when R_y is hydrogen R_x is alkoxy of one to four carbon atoms, hydroxyalkoxy of one to four carbon atoms, 1-alkynyl of two to ten carbon atoms, tetrahydropyranyl, alkoxyalkyl wherein the alkoxy moiety contains one to four carbon atoms and the alkyl moiety contains one to four carbon atoms, or 2-, 3-, or 4-pyridyl, and with the further proviso that when R_y is a carbon-carbon bond R_y and R_x together form a tetrahydrofuranyl group optionally substituted with one or more substituents independently selected from hydroxy and hydroxyalkyl of one to four carbon atoms;

 R_{24} is selected from hydrogen, alkyl of one to four carbon atoms, phenyl, and substituted phenyl wherein the substituent is selected from alkyl of one to four carbon atoms, alkoxy of one to four carbon atoms, and halogen; and

R₄ is selected from hydrogen, straight chain or branched ⁵ chain alkoxy containing one to four carbon atoms, halogen, and straight chain or branched chain alkyl containing one to four carbon atoms;

wherein

R₁₅ is selected from hydrogen; straight chain or branched chain alkyl containing one to ten carbon atoms and substituted straight chain or branched chain alkyl containing one to ten carbon atoms, wherein the substituent is selected from cycloalkyl containing three to six carbon atoms and cycloalkyl containing three to six carbon atoms substituted by straight chain or branched chain alkyl containing one to four carbon atoms; straight chain or branched chain alkenyl containing two to ten carbon atoms and substituted straight chain or branched chain alkenyl containing two to ten carbon atoms, wherein the substituent is selected from cycloalkyl containing three to six carbon atoms and cycloalkyl containing three to six carbon atoms substituted by straight chain or branched 35 chain alkyl containing one to four carbon atoms; hydroxyalkyl of one to six carbon atoms; alkoxyalkyl wherein the alkoxy moiety contains one to four carbon atoms and the alkyl moiety contains one to six carbon atoms; acyloxyalkyl wherein the acyloxy moiety is alkanoyloxy of two to four 40 carbon atoms or benzoyloxy, and the alkyl moiety contains one to six carbon atoms; benzyl; (phenyl)ethyl; and phenyl; said benzyl, (phenyl)ethyl or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from alkyl of one to four carbon 45 atoms, alkoxy of one to four carbon atoms, and halogen, with the proviso that when said benzene ring is substituted by two of said moieties, then the moieties together contain no more than six carbon atoms;

 R_{25} is

$$X$$
 R_s

wherein

 R_S and R_T are independently selected from hydrogen, alkyl of one to four carbon atoms, phenyl, and substituted phenyl 60 wherein the substituent is selected from alkyl of one to four carbon atoms, alkoxy of one to four carbon atoms, and halogen;

X is selected from alkoxy containing one to four carbon atoms, alkoxyalkyl wherein the alkoxy moiety contains one 65 to four carbon atoms and the alkyl moiety contains one to four carbon atoms, hydroxyalkyl of one to four carbon atoms,

10

haloalkyl of one to four carbon atoms, alkylamido wherein the alkyl group contains one to four carbon atoms, amino, substituted amino wherein the substituent is alkyl or hydroxyalkyl of one to four carbon atoms, azido, chloro, hydroxy, 1-morpholino, 1-pyrrolidino, alkylthio of one to four carbon atoms; and

 R_5 is selected from hydrogen, straight chain or branched chain alkoxy containing one to four carbon atoms, halogen, and straight chain or branched chain alkyl containing one to four carbon atoms;

and pharmaceutically acceptable salts of any of the foregoing. In another embodiment, the IRM compound can be chosen from 6,7 fused cycloalkylimidazopyridine amines defined by Formula VI below:

$$R_6$$
 R_{16}
 R_{16}
 R_{16}
 R_{16}

wherein

20

m is 1, 2, or 3;

R₁₆ is selected from hydrogen; cyclic alkyl of three, four, or five carbon atoms; straight chain or branched chain alkyl containing one to ten carbon atoms and substituted straight chain or branched chain alkyl containing one to ten carbon atoms, wherein the substituent is selected from cycloalkyl containing three to six carbon atoms and cycloalkyl containing three to six carbon atoms substituted by straight chain or branched chain alkyl containing one to four carbon atoms; fluoro- or chloroalkyl containing from one to ten carbon atoms and one or more fluorine or chlorine atoms; straight chain or branched chain alkenyl containing two to ten carbon atoms and substituted straight chain or branched chain alkenyl containing two to ten carbon atoms, wherein the substituent is selected from cycloalkyl containing three to six carbon atoms and cycloalkyl containing three to six carbon atoms substituted by straight chain or branched chain alkyl containing one to four carbon atoms; hydroxyalkyl of one to six carbon atoms; alkoxyalkyl wherein the alkoxy moiety contains one to four carbon atoms and the alkyl moiety contains one to six carbon atoms; acyloxyalkyl wherein the acyloxy moiety is alkanoyloxy of two to four carbon atoms or 50 benzoyloxy, and the alkyl moiety contains one to six carbon atoms, with the proviso that any such alkyl, substituted alkyl, alkenyl, substituted alkenyl, hydroxyalkyl, alkoxyalkyl, or acyloxyalkyl group does not have a fully carbon substituted carbon atom bonded directly to the nitrogen atom; benzyl; (phenyl)ethyl; and phenyl; said benzyl, (phenyl)ethyl or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from alkyl of one to four carbon atoms, alkoxy of one to four carbon atoms, and halogen, with the proviso that when said benzene ring is substituted by two of said moieties, then the moieties together contain no more than six carbon atoms; and $-CHR_xR_v$ wherein

 R_y is hydrogen or a carbon-carbon bond, with the proviso that when R_y is hydrogen R_x is alkoxy of one to four carbon atoms, hydroxyalkoxy of one to four carbon atoms, 1-alkynyl of two to ten carbon atoms, tetrahydropyranyl, alkoxyalkyl

wherein the alkoxy moiety contains one to four carbon atoms and the alkyl moiety contains one to four carbon atoms, 2-, 3-, or 4-pyridyl, and with the further proviso that when R_v is a carbon-carbon bond R_{ν} and R_{x} together form a tetrahydrofuranyl group optionally substituted with one or more sub- 5 stituents independently selected from hydroxy and hydroxyalkyl of one to four carbon atoms:

R₂₆ is selected from hydrogen; straight chain or branched chain alkyl containing one to eight carbon atoms; straight chain or branched chain hydroxyalkyl containing one to six carbon atoms; morpholinoalkyl; benzyl; (phenyl)ethyl; and phenyl, the benzyl, (phenyl)ethyl, or phenyl substituent being optionally substituted on the benzene ring by a moiety selected from methyl, methoxy, and halogen; and $-C(R_s)$ $(R_T)(X)$ wherein R_S and R_T are independently selected from hydrogen, alkyl of one to four carbon atoms, phenyl, and substituted phenyl wherein the substituent is selected from alkyl of one to four carbon atoms, alkoxy of one to four carbon atoms, and halogen;

X is selected from alkoxy containing one to four carbon atoms, alkoxyalkyl wherein the alkoxy moiety contains one to four carbon atoms and the alkyl moiety contains one to four carbon atoms, haloalkyl of one to four carbon atoms, alkylamido wherein the alkyl group contains one to four carbon atoms, amino, substituted amino wherein the substituent is alkyl or hydroxyalkyl of one to four carbon atoms, azido, alkylthio of one to four carbon atoms, and morpholinoalkyl wherein the alkyl moiety contains one to four carbon atoms; 30

R₆ is selected from hydrogen, fluoro, chloro, straight chain or branched chain alkyl containing one to four carbon atoms, and straight chain or branched chain fluoro- or chloroalkyl containing one to four carbon atoms and at least one fluorine or chlorine atom;

and pharmaceutically acceptable salts thereof.

In another embodiment, the IRM compound can be chosen from imidazopyridine amines defined by Formula VII below: 40

$$\begin{array}{c|c}
NH_2 \\
N\\
R_{67}
\end{array}$$

$$\begin{array}{c|c}
N\\
R_{17}
\end{array}$$

wherein

 R_{17} is selected from hydrogen; $-CH_2R_W$ wherein R_W is selected from straight chain, branched chain, or cyclic alkyl containing one to ten carbon atoms, straight chain or branched chain alkenyl containing two to ten carbon atoms, straight chain or branched chain hydroxyalkyl containing one to six carbon atoms, alkoxyalkyl wherein the alkoxy moiety contains one to four carbon atoms and the alkyl moiety contains one to six carbon atoms, and phenylethyl; and -CH \equiv CR_ZR_Z wherein each R_Z is independently straight chain, branched chain, or cyclic alkyl of one to six carbon

R₂₇ is selected from hydrogen; straight chain or branched chain alkyl containing one to eight carbon atoms; straight

12

chain or branched chain hydroxyalkyl containing one to six carbon atoms; alkoxyalkyl wherein the alkoxy moiety contains one to four carbon atoms and the alkyl moiety contains one to six carbon atoms; benzyl, (phenyl)ethyl and phenyl, the benzyl, (phenyl)ethyl and phenyl being optionally substituted on the benzene ring by a moiety selected from methyl, methoxy, and halogen; and morpholinoalkyl wherein the alkyl moiety contains one to four carbon atoms;

 R_{67} and R_{77} are independently selected from hydrogen and alkyl of one to five carbon atoms, with the proviso that R₆₇ and R₇₇ taken together contain no more than six carbon atoms, and with the further proviso that when R_{77} is hydrogen then R₆₇ is other than hydrogen and R₂₇ is other than hydrogen or morpholinoalkyl, and with the further proviso that when R_{67} is hydrogen then R_{77} and R_{27} are other than hydro-

and pharmaceutically acceptable salts thereof.

In another embodiment, the IRM compound can be chosen from 1,2 bridged imidazoquinoline amines defined by For-20 mula VIII below:

VIII

wherein

VII

Z is selected from

 $-(CH_2)_p$ — wherein p is 1 to 4; $-(CH_2)_a$ — $-C(R_DR_E)(CH_2)_b$ —, wherein a and b are integers and a+b is 0 to 3, R_D is hydrogen or alkyl of one to four carbon atoms, and R_E is selected from alkyl of one to four carbon atoms, hydroxy, —ORF wherein R_F is alkyl of one to four carbon atoms, and —NR $_{G}\mathrm{R'}_{G}$ wherein R_{G} and $\mathrm{R'}_{G}$ are independently hydrogen or alkyl of one to four carbon atoms;

 $-(CH_2)_a$ —(Y)— $(CH_2)_b$ — wherein a and b are integers and a+b is 0 to 3, and Y is O, S, or —NR_J— wherein R_J is 45 hydrogen or alkyl of one to four carbon atoms;

q is 0 or 1, and

R₈ is selected from alkyl of one to four carbon atoms, alkoxy of one to four carbon atoms, and halogen, and pharmaceutically acceptable salts thereof.

In another embodiment, the IRM compound can be chosen from thiazoloquinoline amines, oxazoloquinoline amines, thiazolopyridine amines, oxazolopyridine amines, thiazolonaphthyridine amines and oxazolonaphthyridine amines defined by Formula IX below:

$$\begin{array}{c} N \\ N \\ R_{39} \end{array} \begin{array}{c} N \\ R_{19} \end{array} \begin{array}{c} N \\ R_{29} \end{array}$$

14

wherein: R₁₉ is selected from oxygen, sulfur and selenium; R₂₉ is selected from $-S(O)_{0-2}$ - $(C_{1-20} alkyl)_{0-1}$ -heteroaryl; -hydrogen; $--S(O)_{0-2}$ $--(C_{1-20} \text{ alkyl})_{0-1}$ -heterocyclyl; -alkyl; $-N(R_{310})_2;$ -alkyl-OH; $--N_3$; -haloalkvl; oxo: -alkenyl; -halogen; -alkyl-X-alkyl; -NO₂; 10 -alkyl-X-alkenyl; -OH; and -alkenyl-X-alkyl; -alkenyl-X-alkenyl; $-C_{1-20}$ alkyl-NR₃₁₀-Q-X $-R_{410}$ or $-C_{2-20}$ alkenyl--alkyl-N(R_{59})₂; NR_{310} -Q-X— R_{410} wherein Q is —CO— or —SO₂—; X is a -alkyl-N3; bond, —O— or — NR_{310} — and R_{410} is aryl; heteroaryl; het--alkyl-O—C(O)— $N(R_{59})_2$; erocyclyl; or —C₁₋₂₀ alkyl or C₂₋₂₀ alkenyl that is unsubsti--heterocyclyl; tuted or substituted by one or more substituents selected from: -alkyl-X-heterocyclyl; -alkenyl-X-heterocyclyl; -aryl; -heteroaryl; -aryl; 20 -alkyl-X-aryl; -heterocyclyl; -alkenyl-X-aryl; —O—C₁₋₂₀ alkyl; $--O-(C_{1-20} alkyl)_{0-1}-aryl;$ -heteroaryl; $--O-(C_{1-20} \text{ alkyl})_{0-1}$ -heteroaryl; -alkyl-X-heteroaryl; and -O— $(C_{1-20} alkyl)_{0-1}$ -heterocyclyl; -alkenyl-X-heteroaryl; 25 —CO—O—C $_{1\text{-}20}$ alkyl; R_{39} and R_{49} are each independently: $--S(O)_{0-2}--C_{1-20}$ alkyl; -hydrogen; $-S(O)_{0-2}$ $-(C_{1-20} \text{ alkyl})_{0-1}$ -aryl; —X-alkyl; $-S(O)_{0-2}$ — $(C_{1-20} alkyl)_{0-1}$ -heteroaryl; -halo; $-S(O)_{0-2}$ — $(C_{1-20} \text{ alkyl})_{0-1}$ -heterocyclyl; -haloalkyl; $-N(R_{310})_2;$ $-NR_{310}-CO-O-C_{1-20}$ alkyl; $-N(R_{59})_2$; or when taken together, R₃₉ and R₄₉ form a fused aromatic, heteroaromatic, cycloalkyl or heterocyclic ring; $-N_3$; X is selected from —O—, —S—, —NR₅₉—, —C(O) oxo; -C(O)O—, -OC(O)—, and a bond; and -halogen; 35 -NO₂; each R_{59} is independently H or C_{1-8} alkyl; –OH: and and pharmaceutically acceptable salts thereof. In another embodiment, the IRM compound can be chosen —SH; or R₄₁₀ is from imidazonaphthyridine amines and imidazotetrahydronaphthyridine amines defined by Formulas X and XI 40 below: $(\dot{O})_{0-1}$ X $(\dot{C}H_2)_{1-6}$ 45 $\dot{N}(R_{310})_2$ R_{210}

50

55

60

65

 $-CO-C_{1-10}$ alkyl;

 $-N_3$;

-aryl;

-heteroaryl;

-heterocyclyl;

$$\begin{array}{c}
NH_2 \\
N\\
R_{210}
\end{array}$$

A is —N—CR=CR—CR=; =CR—N=CR—CR=;

—CO—O—C₁₋₂₀ alkyl;

wherein Y is —N— or —CR—; R₂₁₀ is selected from: -hydrogen; –C₁₋₁₀ alkyl; —C₂₋₁₀ alkenyl; -aryl; $\begin{array}{l} -C_{1\text{-}10} \text{ alkyl-}O-C_{1\text{-}10} \text{ alkyl;} \\ -C_{1\text{-}10} \text{ alkyl-}O-C_{2\text{-}10} \text{ alkenyl;} \text{ and} \\ -C_{1\text{-}10} \text{ alkyl or } C_{2\text{-}10} \text{ alkenyl substituted by one or more} \end{array}$ substituents selected from: -OH; -halogen; $-N(R_{310})_2$; $-CO-N(R_{310})_2;$

-CO-aryl; and

—CO-heteroaryl;

each R₃₁₀ is independently selected from hydrogen and C_{1-10} alkyl; and

each R is independently selected from hydrogen, C₁₋₁₀ 5 alkyl, C_{1-10} alkoxy, halogen and trifluoromethyl;

wherein

B is
$$-NR-C(R)_2-C(R)_2-C(R)_2-;$$
 $-C(R)_2-NR-C(R)_2-C(R)_2-;$ $-C(R)_2-C(R)_2-NR-C(R)_2-$ or $-C(R)_2-C(R)_2-C(R)_2-NR-;$

R₁₁₁ is selected from:

-hydrogen;

- C_{1-20} alkyl or C_{2-20} alkenyl that is unsubstituted or substituted by one or more substituents selected from:

-aryl;

-heteroaryl;

-heterocyclyl;

—O—C₁₋₂₀ alkyl;

—O—(C₁₋₂₀ alkyl)₀₋₁-aryl;

--O $-(C_{1-20} alkyl)_{0-1}$ -heteroaryl;

—O—(C₁₋₂₀ alkyl)₀₋₁-heterocyclyl;

—CO—O—C₁₋₂₀ alkyl;

 $--S(O)_{0-2}$ -- $(C_{1-20} alkyl)_{0-1}$ -heteroaryl;

 $-S(O)_{0-2}$ $-(C_{1-20} \text{ alkyl})_{0-1}$ -heterocyclyl;

 $-N(R_{311})_2;$

 $-N_3$;

oxo;

-halogen;

-NO₂;

-OH; and

erocyclyl; or —C₁₋₂₀ alkyl or C₂₋₂₀ alkenyl that is unsubstituted or substituted by one or more substituents selected from:

-aryl;

-heteroaryl;

-heterocyclyl;

--O--C₁₋₂₀ alkyl;

—O—(C₁₋₂₀ alkyl)₀₋₁-aryl;

 $--O-(C_{1-20} alkyl)_{0-1}$ -heteroaryl;

—O—(C₁₋₂₀ alkyl)₀₋₁-heterocyclyl;

—CO—O—C₁₋₂₀ alkyl;

 $--S(O)_{0-2}--C_{1-20}$ alkyl;

 $--S(O)_{0-2}$ -- $(C_{1-20} alkyl)_{0-1}$ -aryl;

 $-S(O)_{0-2}$ - $(C_{1-20} alkyl)_{0-1}$ -heteroaryl;

 $-S(O)_{0-2}$ $-(C_{1-20} \text{ alkyl})_{0-1}$ -heterocyclyl;

 $-N(R_{311})_2;$

oxo:

-halogen;

-NO₂;

-OH; and -SH; or R₄₁₁ is

 $\dot{N}(R_{311})_2$

wherein Y is —N— or —CR—;

 R_{211} is selected from:

-hydrogen;

 $-C_{1-10}$ alkyl;

—C₂₋₁₀ alkenyl;

-aryl;

 $-C_{1-10}$ alkyl $-O-C_{1-10}$ -alkyl;

— C_{1-10} alkyl-O— C_{2-10} alkenyl; and — C_{1-10} alkyl or C_{2-10} alkenyl substituted by one or more substituents selected from:

-OH;

-halogen;

 $-N(R_{311})_2$;

 $--CO--N(R_{311})_2;$

—CO—C₁₋₁₀ alkyl;

 $-N_3$;

-aryl;

-heteroaryl;

-heterocyclyl;

—CO-aryl; and

—CO-heteroaryl;

each R₃₁₁ is independently selected from hydrogen and C₁₋₁₀ alkyl; and

each R is independently selected from hydrogen, C₁₋₁₀ alkyl, C_{1-10} alkoxy, halogen, and trifluoromethyl;

and pharmaceutically acceptable salts thereof.

In another embodiment, the IRM compound can be chosen from 1H-imidazo[4,5-c]quinolin-4-amines and tetrahydro-1H-imidazo[4,5-c]quinolin-4-amines defined by Formulas XII, XIII and XIV below:

$$\begin{array}{c} NH_2 \\ N\\ R_{212} \end{array}$$

60 wherein

55

 R_{112} is -alkyl-NR₃₁₂—CO—R₄₁₂ or -alkenyl-NR₃₁₂— $CO-R_{412}$ wherein R_{412} is aryl, heteroaryl, alkyl or alkenyl, each of which may be unsubstituted or substituted by one or 65 more substituents selected from:

-alkyl;

-alkenyl;

17		10
-alkynyl;		-heteroaryl;
		· ·
-(alkyl) ₀₋₁ -aryl;		-(substituted heteroaryl);
-(alkyl) ₀₋₁ -(substituted aryl);		-heterocyclyl;
-(alkyl) ₀₋₁ -heteroaryl;		-(substituted heterocyclyl);
-(alkyl) ₀₋₁ -(substituted heteroaryl);	5	
	,	—CO-aryl; and
—O-alkyl;		—CO-heteroaryl;
—O-(alkyl) ₀₋₁ -aryl;		each R ₃₁₂ is independently selected from hydrogen; C ₁₋₁₀
—O-(alkyl) ₀₋₁ -(substituted aryl);		
		alkyl-heteroaryl; C_{1-10} alkyl-(substituted heteroaryl); C_{1-10}
O-(alkyl) ₀₋₁ -heteroaryl;		alkyl-aryl; C_{1-10} alkyl-(substituted aryl) and C_{1-10} alkyl;
—O-(alkyl) ₀₋₁ -(substituted heteroaryl);	10	v is 0 to 4;
—CO-aryl;		*
—CO-(substituted aryl);		and each R_{12} present is independently selected from C_{1-10}
• • •		alkyl, C ₁₋₁₀ alkoxy, halogen, and trifluoromethyl;
—CO-heteroaryl;		
—CO-(substituted heteroaryl);		
—COOH;	15	
*	13	XIII
—CO—O-alkyl;		$_{ m NH_2}^{ m NH_2}$
—CO-alkyl;		
$-S(O)_{0-2}$ -alkyl;		N
$-S(O)_{0-2}^{0-2}$ -(alkyl) ₀₋₁ -aryl;		N Y N
	•	R_{213}
$-S(O)_{0-2}$ -(alkyl) ₀₋₁ -(substituted aryl);	20	N N
$-S(O)_{0-2}$ -(alkyl) ₀₋₁ -heteroaryl;		E Y i
$-S(O)_{0-2}$ -(alkyl) ₀₋₁ -(substituted heteroaryl);		$(R_{13})_{\nu}$
		(R ₁₃) _v R ₁₁₃
$-P(O)(OR_{312})_2;$		~
—NR ₃₁₂ —CO—O-alkyl;		
$-N_3$;	25	wherein
-halogen;		
		R_{113} is -alkyl-NR ₃₁₃ —SO ₂ —X—R ₄₁₃ or -alkenyl-
$-NO_2$;		NR ₃₁₃ —SO ₂ —X—R ₄₁₃ ;
—CN;		
-haloalkyl;		X is a bond or $-NR_{513}$ —;
—O-haloalkyl;	30	R ₄₁₃ is aryl, heteroaryl, heterocyclyl, alkyl or alkenyl, each
• •	30	of which may be unsubstituted or substituted by one or more
—CO-haloalkyl;		
—OH;		substituents selected from:
—SH; and in the case that R ₄₁₂ is alkyl, alkenyl, or hetero-		-alkyl;
		-alkenyl;
cyclyl, oxo; or R ₄₁₂ is		
	35	-aryl;
		-heteroaryl;
		-heterocyclyl;
		• •
$\frac{1}{1}$ (C ₁₋₁₀ alkyl)-NR ₃₁₂ $\frac{1}{1}$ (C ₁₋₁₀ alkyl)-R ₅₁₂		-substituted cycloalkyl;
		-substituted aryl;
~	40	-substituted heteroaryl;
wherein		-substituted heterocyclyl;
		—O-alkyl;
R_{512} is an aryl, (substituted aryl), heteroaryl, (substituted		—O-(alkyl) ₀₋₁ -aryl;
heteroaryl), heterocyclyl or (substituted heterocyclyl) group;		
R_{212} is selected from:	45	—O-(alkyl) ₀₋₁ -substituted aryl;
-hydrogen;	10	—O-(alkyl) ₀₋₁ -heteroaryl;
		—O-(alkyl) ₀₋₁ -substituted heteroaryl;
-alkyl;		—O-(alkyl) ₀₋₁ -heterocyclyl;
-alkenyl;		
-aryl;		—O-(alkyl) ₀₋₁ -substituted heterocyclyl;
-(substituted aryl);	50	—COOH;
	30	—CO—O-alkyl;
-heteroaryl;		
-(substituted heteroaryl);		—CO-alkyl;
-heterocyclyl;		$-S(O)_{0-2}$ -alkyl;
-(substituted heterocyclyl);		$-S(O)_{0-2}$ -(alkyl) ₀₋₁ -aryl;
-alkyl-O-alkyl;	55	$S(O)_{0-2}$ -(alkyl) ₀₋₁ -substituted aryl;
-alkyl-O-alkenyl; and		$-S(O)_{0-2}$ -(alkyl) ₀₋₁ -heteroaryl;
-alkyl or alkenyl substituted by one or more substituents		$-S(O)_{0-2}$ -(alkyl) ₀₋₁ -substituted heteroaryl;
selected from:		$-S(O)_{0-2}$ -(alkyl) ₀₋₁ -heterocyclyl;
		$-5(O)_{0-2}$ -(alky1) ₀₋₁ -neterocycly1;
—ОН;		$-S(O)_{0-2}$ -(alkyl) ₀₋₁ -substituted heterocyclyl;
-halogen;	60	$-(alkyl)_{0-1}-NR_{313}R_{313};$
$-N(R_{312})_2;$		$-(alkyl)_{0-1}-NR_{313}-313$, - $(alkyl)_{0-1}-NR_{313}-CO$ —O-alkyl;
$-CO-N(R_{312})_2;$		-(alkyl) ₀₋₁ -NR ₃₁₃ —CO-alkyl;
—CO—C ₁₋₁₀ alkyl;		-(alkyl) ₀₋₁ -NR ₃₁₃ —CO-aryl;
$-CO-O-C_{1-10}$ alkyl;		-(alkyl) ₀₋₁ -NR ₃₁₃ —CO-substituted aryl;
$-N_3$;	65	-(alkyl) $_{0-1}$ -NR $_{313}$ —CO-heteroaryl;
	05	(all rd) ND CO mh ct to to 11 - to
-aryl;		-(alkyl) ₀₋₁ -NR ₃₁₃ —CO-substituted heteroaryl;
-(substituted aryl);		$-N_3$;
(50.55110.000 01),		143,

000,127

```
19
   -halogen;
   -haloalkyl;
   -haloalkoxy;
   —CO-haloalkyl;
   —CO-haloalkoxy;
   -NO_2;
   —СN;
     -OH;
      -SH; and in the case that R_{413} is alkyl, alkenyl, or hetero-
   R<sub>213</sub> is selected from:
   -hydrogen;
   -alkyl;
   -alkenyl;
   -aryl;
   -substituted aryl;
   -heteroaryl;
   -substituted heteroaryl;
   -alkyl-O-alkyl;
                                                                            20
   -alkyl-O-alkenyl; and
   alkyl or alkenyl substituted by one or more substituents
      selected from:
       -OH;
      -halogen;
      -N(R_{313})_2;
                                                                            25
      -CO-N(R_{313})_2;
        -CO-C_{1-10} alkyl;
      —CO—O—C<sub>1-10</sub> alkyl;
      -N_3;
      -aryl;
      -substituted aryl;
      -heteroaryl;
      -substituted heteroaryl;
      -heterocyclyl;
      -substituted heterocyclyl;
       —CO-aryl;
      —CO-(substituted aryl);
      -CO-heteroaryl; and
       —CO-(substituted heteroaryl);
   each R<sub>313</sub> is independently selected from hydrogen and 40
C_{1-10} alkyl; or when X is a bond R_{313} and R_{413} can join to form
a 3 to 7 membered heterocyclic or substituted heterocyclic
ring;
   R_{513} is selected from hydrogen and C_{1-10} alkyl, or R_{413} and
R<sub>513</sub> can combine to form a 3 to 7 membered heterocyclic or 45
substituted heterocyclic ring;
   v is 0 to 4;
   and each R_{13} present is independently selected from C_{1-10}
alkyl, C<sub>1-10</sub> alkoxy, halogen, and trifluoromethyl;
                                                                            50
                                                                     XIV
                                                                            55
                                          R_{214}
                                                                            60
   \begin{array}{l} R_{114}\,\text{is -alkyl-NR}_{314} -\!\!-\!\!\text{CY--NR}_{514} -\!\!-\!\!\text{X---\!R}_{414}\,\text{or} \\ -\text{alkenyl-NR}_{314} -\!\!-\!\!\!\text{CY---\!NR}_{514} -\!\!\!-\!\!\!\text{X---\!R}_{414} \end{array}
```

wherein

Y is =O or =S;

X is a bond, -CO— or $-SO_2$ —;

```
20
       R_{414} is aryl, heteroaryl, heterocyclyl, alkyl or alkenyl, each
    of which may be unsubstituted or substituted by one or more
    substituents selected from:
       -alkyl;
       -alkenyl;
       -aryl;
        -heteroaryl;
       -heterocyclyl;
       -substituted aryl;
       -substituted heteroaryl;
       -substituted heterocyclyl;
       —O-alkyl;
       -O-(alkyl)<sub>0-1</sub>-aryl;
       --O-(alkyl)_{0-1}-substituted aryl;
       --O-(alkyl)<sub>0-1</sub>-heteroaryl;
       —O-(alkyl)<sub>0-1</sub>-substituted heteroaryl;
       —O-(alkyl)<sub>0-1</sub>-heterocyclyl;
       —O-(alkyl)<sub>0-1</sub>-substituted heterocyclyl;
       -COOH;
       --CO--O-alkyl:
       —CO-alkyl;
       —S(O)<sub>0-2</sub>-alkyl;
        —S(O)<sub>0-2</sub>-(alkyl)<sub>0-1</sub>-aryl;
        -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-substituted aryl;
          -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-heteroaryl;
          -S(O)<sub>0-2</sub>-(alkyl)<sub>0-1</sub>-substituted heteroaryl;
          -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-heterocyclyl;
        -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-substituted heterocyclyl;
       \hbox{-(alkyl)}_{0\text{--}1}\hbox{-NR}_{314}R_{314};
       -(alkyl)<sub>0-1</sub>-NR<sub>314</sub>—CO—O-alkyl;
-(alkyl)<sub>0-1</sub>-NR<sub>314</sub>—CO-alkyl;
       -(alkyl)<sub>0-1</sub>-NR<sub>314</sub>—CO-aryl;
       -(alkyl)_{0-1}-NR_{314}—CO-substituted aryl;
       \hbox{-(alkyl)}_{0\hbox{--}1}\hbox{-NR}_{314}\hbox{---}CO\hbox{-heteroaryl};
       -(alkyl)<sub>0-1</sub>-NR<sub>314</sub>—CO-substituted heteroaryl;
       -N_3;
       -halogen;
       -haloalkyl;
       -haloalkoxy;
       —CO-haloalkoxy;
       -NO<sub>2</sub>;
       -CN;
          -OH;
          -SH; and, in the case that R_{414} is alkyl, alkenyl or hetero-
          cyclyl, oxo;
       with the proviso that when X is a bond R_{414} can addition-
    ally be hydrogen;
       R<sub>214</sub> is selected from:
       -hydrogen;
       -alkyl;
       -alkenyl;
       -aryl;
        -substituted aryl;
       -heteroaryl;
       -substituted heteroaryl;
       -alkyl-O-alkyl;
       -alkyl-O-alkenyl; and
       -alkyl or alkenyl substituted by one or more substituents
          selected from:
             -OH;
          -halogen;
            -N(R_{314})_2
           -CO-N(R_{314})_2;
          --CO--C<sub>1-10</sub> alkyl;
          --CO--O--C<sub>1-10</sub> alkyl;
65
```

 $-N_3$;

-aryl;

21

-substituted aryl; -heteroaryl; -substituted heteroaryl; -heterocyclyl; -substituted heterocyclyl; —CO-aryl; —CO-(substituted aryl); -CO-heteroaryl; and

–CO-(substituted heteroaryl); each R₃₁₄ is independently selected from hydrogen and 10 C_{1-10} alkyl;

 R_{514} is selected from hydrogen and C_{1-10} alkyl, or R_{414} and R₅₁₄ can combine to form a 3 to 7 membered heterocyclic or substituted heterocyclic ring;

v is 0 to 4;

and each R₁₄ present is independently selected from C₁₋₁₀ alkyl, C_{1-10} alkoxy, halogen, and trifluoromethyl; and pharmaceutically acceptable salts thereof.

In another embodiment, the IRM compound can be chosen from 1H-imidazo[4,5-c]quinolin-4-amines and tetrahydro- 20 1H-imidazo[4,5-c]quinolin-4-amines defined by Formulas XV, XVI, XVII, XVIII, XIX, XX, XXI, XXII, XXIII, XXIV, XXV, and XXVI below:

wherein:

R₁₁₅ is selected from:

 $-R_{415}$ — CR_{315} —Z— R_{615} -alkyl;

$$\begin{array}{l} -R_{415} - CR_{315} - Z - R_{615} \text{-alkenyl}; \\ -R_{415} - CR_{315} - Z - R_{615} \text{-aryl}; \\ -R_{415} - CR_{315} - Z - R_{615} \text{-heteroaryl}; \\ -R_{415} - CR_{315} - Z - R_{615} \text{-heterocyclyl}; \\ -R_{415} - CR_{315} - Z - H; \\ -R_{415} - NR_{715} - CR_{315} - R_{615} \text{-alkyl}; \\ -R_{415} - NR_{715} - CR_{35} - R_{615} \text{-alkenyl}; \\ -R_{415} - NR_{715} - CR_{315} - R_{615} \text{-aryl}; \\ -R_{415} - NR_{715} - CR_{315} - R_{615} \text{-heteroaryl}; \\ -R_{415} - NR_{715} - CR_{35} - R_{615} \text{-heteroaryl}; \\ -R_{415} - NR_{715} - CR_{315} - R_{615} \text{-heterocyclyl}; \text{ and} \end{array}$$

 $-R_{415}$ $-NR_{715}$ $-CR_{315}$ $-R_{815}$; Z is —NR₅₁₅—, —O—, or —S–

R₂₁₅ is selected from:

-hydrogen; -alkyl;

-alkenyl; -aryl;

-heteroaryl; -heterocyclyl;

-alkyl-Y-alkyl; -alkyl-Y-alkenyl;

-alkyl-Y-aryl; and -alkyl or alkenyl substituted by one or more substituents selected from:

-OH; -halogen;

 $-N(R_{515})_2$;

 $--CO--N(R_{515})_2;$ —CO—C₁₋₁₀ alkyl;

—CO—O—C₁₋₁₀ alkyl;

-aryl;

-heteroaryl;

-heterocyclyl;

-CO-aryl; and

—CO-heteroaryl;

 R_{315} is \Longrightarrow O or \Longrightarrow S;

R₄₁₅ is alkyl or alkenyl, which may be interrupted by one or more —O— groups;

22

each R_{515} is independently H or C_{1-10} alkyl;

R₆₁₅ is a bond, alkyl, or alkenyl, which may be interrupted by one or more —O— groups;

 R_{715} is H, C_{1-10} alkyl, or arylalkyl; or R_{415} and R_{715} can join together to form a ring;

 R_{815} is H or C_{1-10} alkyl; or R_{715} and R_{815} can join together to form a ring;

Y is —O— or —S(O)₀₋₂—;

v is 0 to 4; and

each R₁₅ present is independently selected from C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, hydroxy, halogen, and trifluorom-

XVI

wherein:

35

45

50

55

60

65

 $-CHR_{516}$, $-CHR_{516}$ -alkyl-, or $-CHR_{516}$ -alk-

 R_{116} is selected from:

 $-R_{416}$ — CR_{316} —Z— R_{616} -alkyl; $-R_{416}$ $-CR_{316}$ -Z $-R_{616}$ -alkenyl;

 $-R_{416}$ — CR_{316} —Z— R_{616} -aryl;

 $-R_{416}$ — CR_{316} —Z— R_{616} -heteroaryl; $-R_{416}$ $-CR_{316}$ -Z $-R_{616}$ heterocyclyl; $-R_{416}$ $-CR_{316}$ -Z -H;

 $-R_{416}$ $-NR_{716}$ $-CR_{316}$ $-R_{616}$ -alkyl;

 $-R_{416}$ — NR_{716} — CR_{316} — R_{616} -alkenyl; $-R_{416}$ $-NR_{716}$ $-CR_{316}$ $-R_{616}$ -aryl;

 $-R_{416}$ — NR_{716} — CR_{316} — R_{616} -heteroaryl;

 $-R_{416}$ $-NR_{716}$ $-CR_{316}$ $-R_{616}$ -heterocyclyl; and

 $-R_{416}$ — NR_{716} — CR_{316} — R_{816} ; $Z \text{ is } -NR_{516} --, -O--, \text{ or } --S--;$

R₂₁₆ is selected from:

-hydrogen;

-alkyl;

-alkenyl;

-aryl;

-heteroaryl;

-heterocyclyl;

-alkyl-Y-alkyl;

-alkyl-Y-alkenyl;

-alkyl-Y-aryl; and

-alkyl or alkenyl substituted by one or more substituents selected from:

-OH;

-halogen;

 $-N(R_{516})_2$; $--CO--N(R_{516})_2;$ --CO--C₁₋₁₀ alkyl; --CO--O--C₁₋₁₀ alkyl; $-N_3$; -aryl; -heteroarvl: -heterocyclyl; —CO-aryl; and 10 —CO-heteroaryl; R_{316} is =0 or =S; R_{416} is alkyl or alkenyl, which may be interrupted by one or more —O— groups; each R_{516} is independently H or C_{1-10} alkyl; R₆₁₆ is a bond, alkyl, or alkenyl, which may be interrupted by one or more —O— groups; R_{716} is H, C_{1-10} alkyl, arylalkyl; or R_{416} and R_{716} can join together to form a ring; R_{816} is H or C_{1-10} alkyl; or R_{716} and R_{816} can join together 20 to form a ring;

$$\begin{array}{c} XVII \\ 30 \\ \\ (R_{17})_{\nu} \\ \end{array}$$

each R₁₆ present is independently selected from C₁₋₁₀

wherein:

—OH;

 $-N_3$; -aryl;

-halogen;

 $-N(R_{317})_2$;

-heteroaryl;

 $-CO-N(R_{317})_2;$

—CO—C₁₋₁₀ alkyl; —CO—O—C₁₋₁₀ alkyl;

Y is —O— or —S(O)₀₋₂—;

v is 0 to 4; and

ethyl;

X is —CHR
$$_{317}$$
—, —CHR $_{317}$ -alkyl-, or —CHR $_{317}$ -alk-enyl-;
$$R_{117}$$
 is selected from: -alkenyl; -aryl; and —R $_{417}$ -aryl;
$$R_{217}$$
 is selected from: -hydrogen; -alkyl; -alkenyl; -aryl; -heteroaryl; -heteroaryl; -heterocyclyl; -alkyl-Y-alkyl; -alkyl-Y-alkyl; -alkyl-Y-alkenyl; -selected from: 55

-heterocyclyl; -CO-aryl; and —CO-heteroaryl; R_{417} is alkyl or alkenyl, which may be interrupted by one or more —O— groups; each R_{317} is independently H or C_{1-10} alkyl; each Y is independently -O or $-S(O)_{0-2}$; v is 0 to 4; and each R₁₇ present is independently selected from C₁₋₁₀

alkyl, C₁₋₁₀ alkoxy, hydroxy, halogen, and trifluorom-

XVIII NH_2

alkyl, C_{1-10} alkoxy, hydroxy, halogen, and trifluorom- $^{\,\,25}$ wherein:

X is —CHR₃₁₈—, —CHR₃₁₈-alkyl-, or —CHR₃₁₈-alkenyl-;

 R_{18} is selected from:

-aryl;

-alkenyl; and

—R₄₁₈-aryl;

R₂₁₈ is selected from:

-hydrogen;

-alkyl;

-alkenyl;

-aryl;

-heteroaryl;

-heterocyclyl:

-alkyl-Y-alkyl;

-alkyl-Y-aryl;

alkyl-Y-alkenyl; and

alkyl or alkenyl substituted by one or more substituents

selected from:

—ОН;

-halogen;

 $-N(R_{318})_2;$

 $--CO-N(R_{318})_2;$

—CO—C₁₋₁₀ alkyl;

—CO—O—C₁₋₁₀ alkyl;

 $-N_3$;

-aryl;

-heteroaryl;

-heterocyclyl;

-CO-aryl; and

-CO-heteroaryl;

 R_{418} is alkyl or alkenyl, which may be interrupted by one or more ---O--- groups;

each R_{318} is independently H or C_{1-10} alkyl;

each Y is independently -O or $-S(O)_{0-2}$;

v is 0 to 4; and

60

each R₁₈ present is independently selected C₁₋₁₀ alkyl, C_{1-10} alkoxy, hydroxy, halogen, and trifluoromethyl;

20

25

30

35

40

45

50

55

XIX

$$R_{19}$$
 R_{219}
 R_{219}
 R_{219}

wherein:

R₁₁₉ is selected from:

-heteroaryl;

-heterocyclyl;

-R₄₁₉-heteroaryl; and

—R₄₁₉-heterocyclyl;

R₂₁₉ is selected from:

-hydrogen;

-alkyl;

-alkenyl;

-aryl;

-heteroaryl;

-heterocyclyl;

-alkyl-Y-alkyl;

-alkyl-Y-alkenyl;

-alkyl-Y-aryl; and

-alkyl or alkenyl substituted by one or more substituents selected from:

-OH;

-halogen;

 $-N(R_{319})_2;$

 $--CO--N(R_{319})_2;$

—CO—C₁₋₁₀ alkyl;

—CO—O—C₁₋₁₀ alkyl;

 $-N_3$;

-aryl;

-heteroaryl;

-heterocyclyl;

—CO-aryl; and

—CO-heteroaryl;

R₄₁₉ is alkyl or alkenyl, which may be interrupted by one or more —O— groups;

each R_{319} is independently H or C_{1-10} alkyl;

each Y is independently -O or $-S(O)_{0-2}$;

v is 0 to 4; and

each R_{19} present is independently selected from $C_{1\text{--}10}$ alkyl, C₁₋₁₀ alkoxy, hydroxy, halogen, and trifluoromethyl;

$$R_{220}$$
 R_{220}
 R_{220}
 R_{220}
 R_{220}
 R_{220}
 R_{220}
 R_{220}
 R_{220}
 R_{220}
 R_{220}

wherein:

X is — CHR_{320} —, — CHR_{320} -alkyl-, or — CHR_{320} -alk-

 R_{120} is selected from:

-heteroaryl;

-heterocyclyl;

—R₄₂₀-heteroaryl; and

-R₄₂₀-heterocyclyl;

R₂₂₀ is selected from:

-hydrogen;

-alkyl;

-alkenyl;

-aryl;

-heteroaryl;

-heterocyclyl;

-alkyl-Y-alkyl;

-alkyl-Y-alkenyl;

-alkyl-Y-aryl; and

-alkyl or alkenyl substituted by one or more substituents selected from:

-OH;

-halogen;

 $-N(R_{320})_2$;

 $-CO-N(R_{320})_2;$

 $--CO--C_{1-10}$ alkyl;

-CO--O--C₁₋₁₀ alkyl;

 $-N_3$;

-aryl;

-heteroaryl;

-heterocyclyl;

—CO-aryl; and

—CO-heteroaryl;

R₄₂₀ is alkyl or alkenyl, which may be interrupted by one or more -O- groups;

each R_{320} is independently H or C_{1-10} alkyl;

each Y is independently -O or $-S(O)_{0-2}$;

v is 0 to 4; and

each R₂₀ present is independently selected from C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, hydroxy, halogen, and trifluorom-

$$R_{21}$$
), R_{221}

wherein:

X is — CHR_{521} —, — CHR_{521} -alkyl-, or — CHR_{521} -alkenyl-:

R₁₂₁ is selected from:

 $-R_{421}$ — NR_{321} — SO_2 — R_{621} -alkyl;

 $-R_{421}$ $-NR_{321}$ $-SO_2$ $-R_{621}$ -alkenyl;

 $-R_{421}$ $-NR_{321}$ $-SO_2$ $-R_{621}$ -aryl;

 $\begin{array}{lll} & R_{421} & RR_{321} & SO_2 & R_{621} & Rr_3, \\ & -R_{421} - NR_{321} - SO_2 - R_{621} - \text{heteroaryl}; \\ & -R_{421} - NR_{321} - SO_2 - R_{621} - \text{heterocyclyl}; \\ & -R_{421} - NR_{321} - SO_2 - R_{721}; \\ & -R_{421} - NR_{321} - SO_2 - NR_{521} - R_{621} - \text{alkyl}; \end{array}$

 $-R_{421}-NR_{321}-SO_2-NR_{521}-R_{621}$ -alkenyl;

 $-R_{421}-NR_{321}-SO_2-NR_{521}-R_{621}-aryl;$ $-R_{421}-NR_{321}-SO_2-NR_{521}-R_{621}$ -heteroaryl;

 $-R_{421}-NR_{321}-SO_2-NR_{521}-R_{621}$ -heterocyclyl; $-R_{421}$ $-NR_{321}$ $-SO_2$ $-NH_2$; R₂₂₁ is selected from: -hydrogen; 5 -alkyl; -alkenyl; -aryl; -heteroaryl; -heterocyclyl; 10 -alkyl-Y-alkyl; -alkyl-Y-alkenyl; -alkyl-Y-aryl; and -alkyl or alkenyl substituted by one or more substituents selected from: -OH; -halogen; $-N(R_{521})_2;$ $-CO-N(R_{521})_2;$ —CO—C₁₋₁₀ alkyl; —CO—O—C₁₋₁₀ alkyl; 20 $-N_3$; -aryl; -heteroaryl; -heterocyclyl; 25 —CO-aryl; and -CO-heteroaryl; Y is --O— or $--S(O)_{0-2}$ R_{321} is H, C_{1-10} alkyl, or arylalkyl; each R₄₂₁ is independently alkyl or alkenyl, which may be ³⁰ interrupted by one or more —O— groups; or R₃₂₁ and R_{421} can join together to form a ring; each R_{521} is independently H, C_{1-10} alkyl, or C_{2-10} alkenyl; R₆₂₁ is a bond, alkyl, or alkenyl, which may be interrupted by one or more —O— groups; R_{721} is $C_{1\mbox{\scriptsize -}10}$ alkyl; or R_{321} and R_{721} can join together to form a ring; v is 0 to 4; and each R_{21} present is independently selected from C_{1-10} alkyl, C₁₋₁₀ alkoxy, hydroxy, halogen, and trifluorom- 40

XXII 45 50

 $-R_{422}-NR_{322}-SO_2-NR_{522}-R_{622}$ -heterocyclyl; $-R_{422}$ $-NR_{322}$ $-SO_2$ $-NH_2$; R₂₂₂ is selected from: -hydrogen; -alkyl; -alkenvl: -aryl; -heteroaryl; -heterocyclyl; -alkyl-Y-alkyl; -alkyl-Y-alkenyl; -alkyl-Y-aryl; and -alkyl or alkenyl substituted by one or more substituents selected from: -OH: -halogen; $-N(R_{522})_2;$ $-CO-N(R_{522})_2;$ —CO—C₁₋₁₀ alkyl; —CO—O—C₁₋₁₀ alkyl; $-N_3$; -aryl; -heteroaryl; -heterocyclyl; —CO-aryl; and —CO-heteroaryl; Y is -O or $-S(O)_{0-2}$; R₃₂₂ is H, C₁₋₁₀ alkyl, or arylalkyl; each R_{422} is independently alkyl or alkenyl, which may be interrupted by one or more —O— groups; or R₃₂₂ and R_{422} can join together to form a ring;

each R_{522} is independently H, C_{1-10} alkyl, or C_{2-10} alkenyl;

 R_{622} is a bond, alkyl, or alkenyl, which may be interrupted by one or more —O— groups;

 R_{722} is C_{1-10} alkyl; or R_{322} and R_{722} can join together to form a ring;

v is 0 to 4; and

each R₂₂ present is independently selected from C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, hydroxy, halogen, and trifluorom-

$$R_{23}$$
 R_{223}
 R_{223}
 R_{223}
 R_{223}

wherein:

envl-; R₁₂₂ is selected from: -R₄₂₂-NR₃₂₂-SO₂-R₆₂₂-alkyl; $-R_{422}$ $-NR_{322}$ $-SO_2$ $-R_{622}$ -alkenyl; $-R_{422}$ — NR_{322} — SO_2 — R_{622} -aryl; 60 $-R_{422}$ — NR_{322} — SO_2 — R_{622} -heteroaryl; -R₄₂₂-NR₃₂₂-SO₂-R₆₂₂-heterocyclyl; -R₄₂₂-NR₃₂₂-SO₂-R₇₂₂; -R₄₂₂-NR₃₂₂-SO₂-NR₅₂₂-R₆₂₂-alkyl; $-R_{422}$ $-NR_{322}$ $-SO_2$ $-NR_{522}$ $-R_{622}$ -alkenyl; 65 $-R_{422}$ $-NR_{322}$ $-SO_2$ $-NR_{522}$ $-R_{622}$ -aryl; $-R_{422}$ $-NR_{322}$ $-SO_2$ $-NR_{522}$ $-R_{622}$ -heteroaryl;

— CHR_{522} —, — CHR_{522} -alkyl-, or — CHR_{522} -alk- 55 wherein: X is -CHR₃₂₃--, -CHR₃₂₃-alkyl-, or -CHR₃₂₃-alk-Z is -S, -SO, or -SO; R₁₂₃ is selected from: -alkyl; -aryl; -heteroaryl; -heterocyclyl; -alkenyl; —R₄₂₃-aryl; -R₄₂₃-heteroaryl; and —R₄₂₃-heterocyclyl;

R₂₂₃ is selected from: -hydrogen; -alkyl; -alkenyl; -aryl; 5 -heteroaryl: -heterocyclyl; -alkyl-Y-alkyl; alkyl-Y-alkenyl; 10 -alkyl-Y-aryl; and -alkyl or alkenyl substituted by one or more substituents selected from: —ОН; -halogen; 15 $-N(R_{323})_2$; $--CO--N(R_{323})_2;$ —CO—C₁₋₁₀ alkyl; --CO--O--C₁₋₁₀ alkyl; $-N_3$; 20 -aryl; -heteroaryl; -heterocyclyl; -CO-aryl; and —CO-heteroaryl; 25 each R_{323} is independently H or C_{1-10} alkyl; each R₄₂₃ is independently alkyl or alkenyl; each Y is independently -O or $-S(O)_{0-2}$; v is 0 to 4; and each R_{23} present is independently selected from C_{1-10} 30 alkyl, C₁₋₁₀ alkoxy, hydroxy, halogen, and trifluorom-XXIV 35

$$R_{224}$$
 R_{224}
 R_{224}
 R_{224}
 R_{224}
 R_{224}
 R_{224}
 R_{224}

wherein: -CHR₃₂₄--, -CHR₃₂₄-alkyl-, or -CHR₃₂₄-alk-X is enyl-; _, _SO__, or _SO₂__; R₁₂₄ is selected from: -alkyl; 50 -aryl; -heteroaryl; -heterocyclyl; -alkenyl; —R₄₂₄-aryl; 55 -R₄₂₄-heteroaryl; and —R₄₂₄-heterocyclyl; R₂₂₄ is selected from: -hydrogen; -alkyl; 60 -alkenyl; -aryl; -heteroaryl; -heterocyclyl; -alkyl-Y-alkyl; 65

alkyl-Y-alkenyl;

-alkyl-Y-aryl; and

30 -alkyl or alkenyl substituted by one or more substituents selected from: -OH: -halogen; $-N(R_{324})_2$; $-CO-N(R_{324})_2;$ —CO—C₁₋₁₀ alkyl; —CO—O—C₁₋₁₀ alkyl; $-N_3$; -aryl; -heteroaryl; -heterocyclyl; —CO-aryl; and —CO-heteroaryl; each R_{324} is independently H or C_{1-10} alkyl; each R₄₂₄ is independently alkyl or alkenyl; each Y is independently -O or $-S(O)_{0-2}$; v is 0 to 4; and each R₂₄ present is independently selected from C₁₋₁₀ alkyl, C1-10 alkoxy, hydroxy, halogen, and trifluorom-

wherein: X is —CHR₅₂₅—, —CHR₅₂₅-alkyl-, or —CHR₅₂₅-alk-R₁₂₅ is selected from: $-R_{425}$ $-NR_{825}$ $-CR_{325}$ $-NR_{525}$ -Z $-R_{625}$ -alkyl; $-R_{425}$ - NR_{825} - CR_{325} - NR_{525} -Z- R_{625} -alkenyl; $-R_{425}^{-125}$ $-NR_{825}^{-125}$ $-CR_{325}^{-125}$ $-NR_{525}^{-125}$ -Z $-R_{625}^{-125}$ -aryl; $-R_{425}$ $-NR_{825}$ $-CR_{325}$ $-NR_{525}$ -Z $-R_{625}$ -heteroaryl; $-NR_{825}$ — CR_{325} — NR_{525} —Z— R_{625} -heterocy- $\begin{array}{lll} -R_{425} - NR_{825} - CR_{325} - NR_{525}R_{725}; \\ -R_{425} - NR_{825} - CR_{325} - NR_{925} - Z - R_{625} - alkyl; \end{array}$ $-R_{425}$ $-NR_{825}$ $-CR_{325}$ $-NR_{925}$ -Z $-R_{625}$ -alkenyl; $-R_{425}$ $-NR_{825}$ $-CR_{325}$ $-NR_{925}$ -Z $-R_{625}$ -aryl; $-R_{425}$ $-NR_{825}$ $-CR_{325}$ $-NR_{925}$ -Z $-R_{625}$ -heteroaryl; and $-R_{425} - NR_{825} - CR_{325} - NR_{925} - Z - R_{625}$ -heterocyclyl; R_{225} is selected from: -hydrogen; -alkyl; -alkenyl; -aryl; -heteroaryl; -heterocyclyl; -alkyl-Y-alkyl; -alkyl-Y-alkenyl; -alkyl-Y-aryl; and alkyl or alkenyl substituted by one or more substituents selected from: -OH; -halogen;

 $-N(R_{525})_2;$

selected from:

-OH:

 $-N_3$;

-aryl;

-heteroaryl;

-heterocyclyl;

—CO-aryl; and

—CO-heteroaryl;

-halogen;

 $-N(R_{526})_2$ $-CO-N(R_{526})_2;$

 $-CO-C_{1-10}$ alkyl;

—CO—O—C₁₋₁₀ alkyl;

-alkyl or alkenyl substituted by one or more substituents

 $--CO--N(R_{525})_2;$ —CO— C_{1-10} alkyl; —CO—O—C₁₋₁₀ alkyl; $-N_3$; -aryl; -heteroaryl; -heterocyclyl; —CO-aryl; and —CO-heteroaryl; each R_{325} is =O or =S; each R_{425} is independently alkyl or alkenyl, which may be interrupted by one or more -O- groups; each R_{525} is independently H or C_{1-10} alkyl; R₆₂₅ is a bond, alkyl, or alkenyl, which may be interrupted by one or more —O— groups; R_{725} is H or $C_{1\mbox{\scriptsize -}10}$ alkyl which may be interrupted by a hetero atom, or R₇₂₅ can join with R₅₂₅ to form a ring; R_{825} is H, C_{1-10} alkyl, or arylalkyl; or R_{425} and R_{825} can join together to form a ring; R_{925} is C_{1-10} alkyl which can join together with R_{825} to 20 form a ring; each Y is independently -O or $-S(O)_{0-2}$; Z is a bond, —CO—, or — SO_2 —; v is 0 to 4; and each R_{25} present is independently selected C_{1-10} alkyl, 25 C_{1-10} alkoxy, hydroxy, halogen, and trifluoromethyl;

XXVI

5 10 each R_{326} is =O or =S;

each R_{426} is independently alkyl or alkenyl, which may be interrupted by one or more —O— groups; each R_{526} is independently H or C_{1-10} alkyl;

R₆₂₆ is a bond, alkyl, or alkenyl, which may be interrupted by one or more —O— groups; R₇₂₆ is H or C₁₋₁₀ alkyl which may be interrupted by a

hetero atom, or R₇₂₆ can join with R₅₂₆ to form a ring; R_{826} is H, C_{1-10} alkyl, or arylalkyl; or R_{426} and R_{826} can join together to form a ring;

 R_{926} is C_{1-10} alkyl which can join together with R_{826} to form a ring;

each Y is independently —O— or —S(O)₀₋₂—; Z is a bond, —CO—, or —SO₂—;

v is 0 to 4; and

each R₂₆ present is independently selected from C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, hydroxy, halogen, and trifluorom-

and pharmaceutically acceptable salts of any of the foregoing. In another embodiment, the IRM compound can be chosen from 1H-imidazo[4,5-c]pyridin-4-amines defined by Formula XXVII below:

wherein:

-CHR₅₂₆--, --CHR₅₂₆-alkyl-, or --CHR₅₂₆-alk- 40 X is enyl-;

 R_{126} is selected from:

 $-R_{426}$ $-NR_{826}$ $-CR_{326}$ $-NR_{526}$ -Z $-R_{626}$ -alkyl; $-R_{426}$ — NR_{826} — CR_{326} — NR_{526} —Z— R_{626} -alkenyl; $\begin{array}{l} -R_{426} - NR_{826} - CR_{326} - NR_{526} - Z - R_{626} \text{-aryl}; \\ -R_{426} - NR_{826} - CR_{326} - NR_{526} - Z - R_{626} \text{-het-} \end{array}$ 45 eroaryl; $-NR_{826}$ $-CR_{326}$ $-NR_{526}$ -Z $-R_{626}$ -heterocy--R₄₂₆-

 $-R_{426}$ $-NR_{826}$ $-CR_{326}$ $-NR_{526}R_{726}$; 50 $-R_{426}$ $-NR_{826}$ $-CR_{326}$ $-NR_{926}$ -Z $-R_{626}$ -alkyl;

 $-R_{426}$ $-NR_{826}$ $-CR_{326}$ $-NR_{926}$ -Z $-R_{626}$ -alkenyl; $-R_{426}$ $-NR_{826}$ $-CR_{326}$ $-NR_{926}$ -Z $-R_{626}$ -aryl;

 $-R_{426}$ $-NR_{826}$ $-CR_{326}$ $-NR_{926}$ -Z $-R_{626}$ -heteroaryl; and

 $-R_{426}$ $-NR_{826}$ $-CR_{326}$ $-NR_{926}$ -Z $-R_{626}$ -heterocy-

R₂₂₆ is selected from:

-hydrogen; -alkyl;

-alkenyl;

-aryl;

-heteroaryl;

-heterocyclyl;

-alkyl-Y-alkyl; -alkyl-Y-alkenyl;

-alkyl-Y-aryl; and

XXVII R'_{527}

wherein

X is alkylene or alkenylene;

Y is —CO— or —CS;

Z is a bond, —O—, or —S—;

R₁₂₇ is aryl, heteroaryl, heterocyclyl, alkyl or alkenyl, each of which may be unsubstituted or substituted by one or more substituents independently selected from:

-alkyl;

-alkenyl;

-aryl;

60

heteroaryl;

-heterocyclyl;

-substituted cycloalkyl;

-substituted aryl;

-substituted heteroaryl;

-substituted heterocyclyl;

-substituted heteroaryl;

```
—O-alkyl;
                                                                                  -heterocyclyl;
—O-(alkyl)<sub>0-1</sub>-aryl;
                                                                                  -substituted heterocyclyl;
—O-(alkyl)<sub>0-1</sub>-(substituted aryl);
                                                                                  -CO-arvl:
—O-(alkyl)<sub>0-1</sub>-heteroaryl;
                                                                                  —CO-(substituted aryl);
—O-(alkyl)<sub>0-1</sub>-(substituted heteroaryl);
                                                                                  -CO-heteroaryl; and
  -O-(alkyl)<sub>0-1</sub>-heterocyclyl;
                                                                                  —CO-(substituted heteroaryl):
  -O-(alkyl)<sub>0-1</sub>-(substituted heterocyclyl);
                                                                               R_{327} and R_{427} are independently selected from hydrogen,
  -COOH;
                                                                                  alkyl, alkenyl, halogen, alkoxy, amino, alkylamino,
-CO-O-alkyl;
                                                                                  dialkylamino, and alkylthio;
—CO-alkyl;
                                                                        10
                                                                               R<sub>527</sub> is H or C<sub>1-10</sub> alkyl, or R<sub>527</sub> can join with X to form a
  -S(O)_{0-2}-alkyl;
                                                                                  ring that contains one or two heteroatoms; or when R<sub>127</sub>
  -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-aryl;
                                                                                  is alkyl, R<sub>527</sub> and R<sub>127</sub> can join to form a ring;
  -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-(substituted aryl);
                                                                               each R<sub>627</sub> is independently H or C<sub>1-10</sub>alkyl;
  -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-heteroaryl;
                                                                        and pharmaceutically acceptable salts thereof.
  -S(O)_{0-1}-(alkyl)<sub>0-1</sub>-(substituted heteroaryl);
                                                                               In another embodiment, the IRM compound can be chosen
  -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-heterocyclyl;
                                                                            from 1H-imidazo[4,5-c]pyridin-4-amines defined by For-
  -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-(substituted heterocyclyl);
                                                                            mula XXVIII below:
-(alkyl)_{0-1}-N(R_{627})_2;
\hbox{-(alkyl)}_{0\text{--}1}\hbox{-NR}_{627}\hbox{--CO--O-alkyl};
-(alkyl)_{0-1}-NR_{627}—CO-alkyl;
                                                                        20
                                                                                                                                              XXVIII
-(alkyl)<sub>0-1</sub>-NR<sub>627</sub>—CO-aryl;
-(alkyl)<sub>0-1</sub>-NR<sub>627</sub>—CO-(substituted aryl);
-(alkyl)<sub>0-1</sub>-NR<sub>627</sub>—CO-heteroaryl;
-(alkyl)<sub>0-1</sub>-NR<sub>627</sub>—CO-(substituted heteroaryl);
  -N_3;
                                                                        25
-halogen;
-haloalkyl;
-haloalkoxy;
  –CO-haloalkyl;
                                                                                                           R<sub>528</sub>
—CO-haloalkoxy;
                                                                        30
-NO_2;
-CN;
  -OH:
                                                                            wherein
  -SH; and in the case of alkyl, alkenyl, and heterocyclyl,
                                                                               X is alkylene or alkenylene;
                                                                               Y is —SO<sub>2</sub>—;
R<sub>227</sub> is selected from:
                                                                               Z is a bond or -NR_{628}—;
-hydrogen;
                                                                               R<sub>128</sub> is aryl, heteroaryl, heterocyclyl, alkyl or alkenyl, each
-alkyl;
                                                                                  of which may be unsubstituted or substituted by one or
-alkenyl;
                                                                                  more substituents independently selected from:
-aryl;
                                                                        40
                                                                               -alkyl;
-substituted aryl;
                                                                               -alkenyl;
-heteroaryl;
                                                                               -aryl;
-substituted heteroaryl;
                                                                               -heteroaryl;
-alkyl-O-alkyl;
                                                                               -heterocyclyl;
-alkyl-S-alkyl;
                                                                               -substituted cycloalkyl;
-alkyl-O-aryl;
                                                                               -substituted aryl;
-alkyl-S-aryl:
                                                                               -substituted heteroarvl:
-alkyl-O-alkenyl;
                                                                               -substituted heterocyclyl;
-alkyl-S-alkenyl; and
                                                                               —O-alkyl;
-alkyl or alkenyl substituted by one or more substituents 50
                                                                               --O-(alkyl)<sub>0-1</sub>-aryl;
   selected from:
                                                                               —O-(alkyl)<sub>0-1</sub>-(substituted aryl);
                                                                               --O-(alkyl)<sub>0-1</sub>-heteroaryl;
     -OH;
   -halogen;
                                                                               —O-(alkyl)<sub>0-1</sub>-(substituted heteroaryl);
                                                                               —O-(alkyl)<sub>0-1</sub>-heterocyclyl;
   -N(R_{627})_2
   -\hat{CO}-\hat{N(R_{627})_2};
                                                                               —O-(alkyl)<sub>0-1</sub>-(substituted heterocyclyl);
   --CS--N(R_{627})_2;
                                                                               -COOH;
   -SO_2-N(R_{627})_2;
                                                                               —CO—O-alkyl;
                                                                               —CO-alkyl;
   -NR_{627}-CO-C<sub>1-10</sub> alkyl;
   -NR_{627} -CS -C_{1-10} alkyl;
                                                                               —S(O)<sub>0-2</sub>-alkyl;
   —NR<sub>627</sub>—SO<sub>2</sub>—C<sub>1-10</sub> alkyl;
                                                                                  -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-aryl;
                                                                        60
     -CO-C<sub>1-10</sub> alkyl;
                                                                                  -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-(substituted aryl);
     -CO-O-C<sub>1-10</sub> alkyl;
                                                                                  -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-heteroaryl;
                                                                                  -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-(substituted heteroaryl);
   -N_3;
   -aryl;
                                                                               -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-heterocyclyl;
   -substituted aryl;
                                                                                  -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-(substituted heterocyclyl);
   -heteroaryl;
                                                                               -(alkyl)_{0-1}-N(R_{628})_2;
```

-(alkyl)₀₋₁-NR₆₂₈—CO—O-alkyl;

XXIX

```
-(alkyl)<sub>0-1</sub>-NR<sub>628</sub>—CO-alkyl;
   -(alkyl)<sub>0-1</sub>-NR<sub>628</sub>—CO-aryl;
                                                                                                NH<sub>2</sub>
   -(alkyl)_{0-1}-NR_{628}—CO-(substituted aryl);
   -(alkyl)<sub>0-1</sub>-NR<sub>628</sub>—CO-heteroaryl;
   -(alkyl)_{0-1}-NR_{628}—CO-(substituted heteroaryl);
   -N_3;
   -halogen;
   -haloalkyl;
   -haloalkoxy;
                                                                          10
   —CO-haloalkyl;
                                                                                                                       `Z_<sub>R129</sub>
                                                                                                            R<sub>529</sub>
   —CO-haloalkoxy;
   -NO<sub>2</sub>;
   -CN;
   -OH;
                                                                              wherein
                                                                                 X is alkylene or alkenylene;
   —SH; and in the case of alkyl, alkenyl, and heterocyclyl,
                                                                                 Y is -CO- or -CS;
                                                                                 Z is -NR_{629}-, -NR_{629}-CO-, -NR_{629}-SO_2-, or
   R_{228} is selected from:
                                                                                     —NR<sub>729</sub>—;
   -hydrogen;
                                                                                 R<sub>129</sub> is aryl, heteroaryl, heterocyclyl, alkyl or alkenyl, each
   -alkyl;
                                                                                    of which may be unsubstituted or substituted by one or
   -alkenyl;
                                                                                    more substituents independently selected from:
   -aryl;
                                                                                 -alkyl;
   -substituted aryl;
                                                                                 -alkenyl;
   -heteroaryl;
                                                                                 -aryl;
   -substituted heteroaryl;
                                                                          25
                                                                                 -heteroaryl;
   -alkyl-O-alkyl;
                                                                                 -heterocyclyl;
   -alkyl-S-alkyl;
                                                                                 -substituted cycloalkyl;
   -alkyl-O-aryl;
                                                                                 -substituted aryl;
   -alkyl-S-aryl:
                                                                                 -substituted heteroaryl;
   -alkyl-O-alkenyl;
                                                                                 -substituted heterocyclyl;
   -alkyl-S-alkenyl; and
                                                                                 —O-alkyl;
   -alkyl or alkenyl substituted by one or more substituents
                                                                                 --O-(alkyl)<sub>0-1</sub>-aryl;
      selected from:
                                                                                 —O-(alkyl)<sub>0-1</sub>-(substituted aryl);
      —ОН;
                                                                                 —O-(alkyl)<sub>0-1</sub>-heteroaryl;
      -halogen;
                                                                                 —O-(alkyl)<sub>0-1</sub>-(substituted heteroaryl);
      -N(R_{628})_2;
      -CO-N(R_{628})_2;
                                                                                 —O-(alkyl)<sub>0-1</sub>-heterocyclyl;
                                                                                 —O-(alkyl)<sub>0-1</sub>-(substituted heterocyclyl);
        -CS-N(R_{628})_2;
                                                                                 -COOH;
        -SO_2-N(R_{628})_2;
                                                                          40
                                                                                 -CO-O-alkyl;
        –NR<sub>628</sub>—CO—C<sub>1-10</sub> alkyl;
                                                                                 -CO-alkyl;
        -NR<sub>628</sub>—CS—C<sub>1-10</sub> alkyl;
                                                                                 --S(O)_{0-2}-alkyl;
        -NR_{628}—SO_2—C_{1-10} alkyl;
                                                                                 —S(O)<sub>0-2</sub>-(alkyl)<sub>0-1</sub>-aryl;
        -CO--C<sub>1-10</sub> alkyl;
      —CO—O—C<sub>1-10</sub> alkyl;
                                                                                 —S(O)<sub>0-2</sub>-(alkyl)<sub>0-1</sub>-(substituted aryl);
                                                                          45
      -N_3;
                                                                                 -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-heteroaryl;
      -arvl:
                                                                                    -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-(substituted heteroaryl);
      -substituted aryl;
                                                                                 -S(O)_{0-2}-(alkyl)<sub>0-1</sub>-heterocyclyl;
      -heteroaryl;
                                                                                 —S(O)<sub>0-1</sub>-(alkyl)<sub>0-1</sub>-(substituted heterocyclyl);
      -substituted heteroaryl;
                                                                          50
                                                                                 -(alkyl)_{0-1}-N(R_{629})_2;
      -heterocyclyl;
                                                                                 -(alkyl)_{0-1}-NR<sub>629</sub>—CO—O-alkyl;
      -substituted heterocyclyl;
                                                                                 \hbox{-(alkyl)}_{0\hbox{--}1}\hbox{-NR}_{629}\hbox{--CO-alkyl};
        –CO-aryl;
                                                                                 -(alkyl)_{0-1}-NR_{629}—CO-aryl;
      —CO-(substituted aryl);
      -CO-heteroaryl; and
                                                                                 -(alkyl)<sub>0-1</sub>-NR<sub>629</sub>—CO-(substituted aryl);
      —CO-(substituted heteroaryl);
                                                                                 \hbox{-(alkyl)}_{0\hbox{--}1}\hbox{-NR}_{629}\hbox{---}\hbox{CO-heteroaryl};
   R<sub>328</sub> and R<sub>428</sub> are independently selected from hydrogen,
                                                                                 -(alkyl)<sub>0-1</sub>-NR<sub>629</sub>—CO-(substituted heteroaryl);
      alkyl, alkenyl, halogen, alkoxy, amino, alkylamino,
                                                                                 -P(O)(O-alkyl)2;
      dialkylamino, and alkylthio;
                                                                                 -N_3;
   R_{\rm 528} is H or C_{\rm 1-10} alkyl, or R_{\rm 528} can join with X to form a \, 60 \,
                                                                                 -halogen;
      ring; or when R_{128} is alkyl, R_{528} and R_{128} can join to
                                                                                 -haloalkyl;
      form a ring;
                                                                                 -haloalkoxy;
   each R<sub>628</sub> is independently H or C<sub>1-10</sub>alkyl;
                                                                                 -CO-haloalkyl;
   and pharmaceutically acceptable salts thereof.
                                                                                 -CO-haloalkoxy;
   In another embodiment, the IRM compound can be chosen 65
                                                                                 -NO<sub>2</sub>;
from 1H-imidazo[4,5-c]pyridin-4-amines defined by For-
mula XXIX below:
                                                                                 —CN;
```

-OH: —SH; and in the case of alkyl, alkenyl, and heterocyclyl, R₂₂₉ is selected from: -hvdrogen: -alkyl; -alkenvl: -aryl; -substituted aryl; 10 -heteroaryl; -substituted heteroaryl; -alkyl-O-alkyl; -alkyl-S-alkyl; -alkyl-O-aryl; 15 -alkyl-S-aryl: -alkyl-O-alkenyl; -alkyl-S-alkenyl; and -alkyl or alkenyl substituted by one or more substituents selected from: 20 -OH: -halogen; $-N(R_{629})_2;$ $-CO-N(R_{629})_2;$ $--CS--N(R_{629})_2;$ 25 -SO₂-N(R₆₂₉)₂; -NR₆₂₉—CO—C₁₋₁₀ alkyl; -NR₆₂₉—CS—C₁₋₁₀ alkyl; $-NR_{629}^{029}-SO_2-C_{1-10}^{1-10}$ alkyl; $-CO-C_{1-10}$ alkyl; --CO--O--C₁₋₁₀ alkyl; $-N_3$; -aryl; -substituted aryl; -heteroaryl; -substituted heteroaryl; -heterocyclyl; -substituted heterocyclyl; —CO-aryl; —CO-(substituted aryl); 40 —CO-heteroaryl; and —CO-(substituted heteroaryl); $R_{\rm 329}$ and $R_{\rm 429}$ are independently selected from hydrogen, alkyl, alkenyl, halogen, alkoxy, amino, alkylamino, dialkylamino, and alkylthio; R_{529} is H or C_{1-10} alkyl, or R_{529} can join with X to form a ring that contains one or two heteroatoms; each R_{629} is independently H or C_{1-10} alkyl; R₇₂₉ is H or C₁₋₁₀ alkyl which may be interrupted by a heteroatom; or when R_{129} is alkyl, R_{729} and R_{129} can join $_{50}$ to form a ring; and pharmaceutically acceptable salts thereof. In another embodiment, the IRM compound can be chosen from 1-position ether or thioether substituted 1H-imidazo[4,

5-c]pyridin-4-amines defined by Formula XXX below:

38 wherein: $X \text{ is } -CH(R_{530})--, -CH(R_{530})$ -alkylene-, $-CH(R_{530})$ alkenylene-, or $\widetilde{CH}(R_{530})$ -alkylene-Y-alkylene-; Y is —O—, or —S(O)₀₋₂—; $-W-R_{130}$ is selected from $-O-R_{130-1-5}$ $-S(O)_{0-2}$ $-R_{130-6}$; $R_{130-1-5}$ is selected from $-R_{630}$ - $C(R_{730})$ -Z- R_{830} -alkyl; $-R_{630}$ - $C(R_{730})$ -Z- R_{830} -alkenyl; $-R_{630}$ $-C(R_{730})$ $-Z-R_{830}$ -aryl; $-R_{630}$ - $C(R_{730})$ -Z- R_{830} -heteroaryl; $-R_{630}$ $-C(R_{730})$ $-Z-R_{830}$ -heterocyclyl; $-R_{630}-C(R_{730})-Z-H;$ $-R_{630}-N(R_{930})-C(R_{730})-R_{830}-alkyl;$ $-R_{630}-N(R_{930})-C(R_{730})-R_{830}$ -alkenyl; $-R_{630}-N(R_{930})-C(R_{730})-R_{830}$ -aryl; $-R_{630}$ $-N(R_{930})$ $-C(R_{730})$ $-R_{830}$ -heteroaryl; $-R_{630}-N(R_{930})-C(R_{730})-R_{830}$ -heterocyclyl; $-R_{630}-N(R_{930})-C(R_{730})-R_{1030}$; $-R_{630}-N(R_{930})-SO_2-R_{830}-alkyl;$ $-R_{630}-N(R_{930})-SO_2-R_{830}$ -alkenyl; $-R_{630}-N(R_{930})-SO_2-R_{830}$ -aryl; $-R_{630}-N(R_{930})-SO_2-R_{830}$ -heteroaryl; $-R_{630}-N(R_{930})-SO_2-R_{830}$ -heterocyclyl; $-R_{630}-N(R_{930})-SO_2-R_{1030};$ $-R_{630}-N(R_{930})-SO_2-N(R_{530})-R_{830}-alkyl;$ $-R_{630}-N(R_{930})-SO_2-N(R_{530})-R_{530}$ -alkenyl; $-R_{630}-N(R_{930})-SO_2-N(R_{530})-R_{830}$ -aryl; $-R_{630}-N(R_{930})-SO_2-N(R_{530})-R_{830}$ -heteroaryl; $-R_{630}-N(R_{930})-SO_2-N(R_{530})-R_{830}$ -heterocyclyl; $-R_{630}-N(R_{930})-SO_2-NH_2;$ R_{630} $N(R_{930})$ $C(R_{730})$ $N(R_{530})$ Q R_{830} - R_{830} $-R_{630}$ $-N(R_{930})$ $-C(R_{730})$ $-N(R_{530})$ -Q-R₈₃₀-aryl; R_{630} $N(R_{930})$ $C(R_{730})$ $N(R_{530})$ Q R_{830} -heteroarvl:

$$---R_{630}-N(R_{930})---C(R_{730})---N$$
A;

55

60

XXX

 $-R_{630}-N(R_{930})-C(R_{730})-N(R_{530})_2;$

 $-R_{630}-N(R_{930})-C(R_{730})-N(R_{1130})-Q-R_{830}-alkyl;$ $-R_{630}-N(R_{930})-C(R_{730})-N(R_{1130})-Q-R_{830}$ -aryl; $-R_{630}-N(R_{930})-C(R_{730})-N(R_{1130})-Q-R_{830}-het R_{630}$ $N(R_{930})$ $C(R_{730})$ $N(R_{1130})$ Q R_{830} hetero- $-R_{630}$ — $N(R_{930})$ — $C(R_{730})$ — $N(R_{1130})H$; -alkenyl; -aryl; —R₆₃₀-aryl; -heteroaryl; -heterocyclyl; -R₆₃₀-heteroaryl; and -R₆₃₀-heterocyclyl; Z is $-N(R_{530})$ —, -–O—, or —S—; Q is a bond, —CO—, or —SO₂—;

 $-R_{630}$ $-N(R_{930})$ $-C(R_{730})$ $-N(R_{530})$ $-Q-R_{830}$ -heterocy-

A represents the atoms necessary to provide a 5- or 6-membered heterocyclic or heteroaromatic ring that contains up to three heteroatoms;

R₁₃₀₋₆ is selected from:

-alkyl;

-aryl;

-heteroaryl;

-heterocyclyl;

-alkenvl;

—R₆₃₀-aryl;

—R₆₃₀-heteroaryl; and

-R₆₃₀-heterocyclyl;

each R_{530} is independently hydrogen, C_{1-10} alkyl, or C_{2-10} alkenvl:

R₆₃₀ is alkylene, alkenylene, or alkynylene, which may be interrupted by one or more —O— groups;

$$R_{730}$$
 is $=0$ or $=S$;

R₈₃₀ is a bond, alkylene, alkenylene, or alkynylene, which may be interrupted by one or more —O— groups;

 R_{930} is hydrogen, C_{1-10} alkyl, or arylalkyl; or R_{930} can join together with any carbon atom of R_{630} to form a ring of the formula

 R_{1030} is hydrogen or $C_{1\text{--}10}$ alkyl; or R_{930} and R_{1030} can join together to form a ring selected from

$$N - C(R_{730})$$
 and $N - S(O)_2$

 R_{1130} is $C_{1\cdot10}$ alkyl; or R_{930} and R_{1130} can join together to $\,^{35}$ form a ring having the structure

$$N - C(R_{730})$$
 $N - C(R_{730})$
 $N - C(R_{730})$

 $\rm R_{1230}$ is $\rm C_{2-7}$ alkylene which is straight chain or branched, wherein the branching does not prevent formation of the ring; $\,$ 45 and

 R_{230} , R_{330} and R_{430} are independently selected from hydrogen and non-interfering substituents;

and pharmaceutically acceptable salts thereof. Illustrative non-interfering R_{230} substituents include:

-alkyl;

-alkenyl;

-aryl;

-heteroaryl;

-heterocyclyl;

-alkylene-Y-alkyl;

-alkylene-Y-alkenyl;

-alkylene-Y-aryl; and

alkyl or alkenyl substituted by one or more substituents

selected from the group consisting of:

—ОН;

-halogen;

 $-N(R_{530})_2;$

-C(O) $-C_{1-10}$ alkyl;

--C(O)--O--C₁₋₁₀ alkyl;

 $-N_3$;

-aryl;

40

-heteroaryl;

-heterocyclyl;

—C(O)-aryl; and

—C(O)-heteroaryl.

Illustrative non-interfering R_{330} and R_{430} substituents include:

 $\rm C_{1-10}$ alkyl, $\rm C_{2-10}$ alkenyl, $\rm C_{2-10}$ alkynyl, $\rm C_{1-10}$ alkoxy, $\rm C_{1-10}$ alkylthio, amino, alkylamino, dialkylamino, halogen, and nitro.

In another embodiment, the IRM compound can be chosen from 1H-imidazo dimers of the formula (XXXI):

XXXI

$$R_{331}$$
 R_{431}
 R_{431}
 R_{431}
 R_{431}
 R_{431}

wherein:

20

25

40

60

A is a divalent linking group selected from the group consisting of:

straight or branched chain C₄₋₂₀ alkylene;

straight or branched chain C₄₋₂₀ alkenylene;

straight or branched chain C₄₋₂₀ alkynylene; and

—Z—Y—W—Y—Z—;

each Z is independently selected from the group consisting

straight or branched chain C₂₋₂₀ alkylene;

straight or branched chain $C_{4\text{--}20}$ alkenylene; and

straight or branched chain C₄₋₂₀ alkynylene;

any of which may be optionally interrupted by -O, $-N(R_{531})$, or -S(O), -;

each Y is independently selected from the group consisting of:

a bond;

 $-N(R_{531})C(O)-$;

 $--C(O)N(R_{531})--;$

 $--N(R_{531})C(O)N(R_{531})--;$

 $N(R_{531})S(O)_2$ —;

 $-S(O)_2N(R_{531})-$;

—OC(O)O—;

--OC(O)--;

—C(O)O—;

 $-N(R_{531})C(O)O$ —; and

 $--OC(O)N(R_{531})--;$

W is selected from the group consisting of:

straight or branched chain C_{2-20} alkylene;

straight or branched chain C₂₋₂₀ alkenylene;

straight of branched chain C_{2-20} afterly rene,

straight or branched chain C_{4-20} alkynylene; straight or branched chain perfluoro C_{2-20} alkylene;

C₁₋₄ alkylene-O—C₁₋₄ alkylene;

 $-S(O)_2$ -,

--OC(O)O--;

 $-N(R_{531})C(O)N(R_{531})-$;

$$(R)_{n};$$

$$(R)_{n};$$

$$(R)_{n};$$

1,5-naphthylene;

2,6-pyridinylene;

1,2-cyclohexylene;

1,3-cyclohexylene;

1,4-cyclohexylene;

trans-1,4-cyclohexylene;

and

trans-5-norbornen-2,3-diyl;

wherein n is 0-4; each R is independently selected from the group consisting of C₁₋₄ alkyl, C₁₋₄ alkoxy, and halogen; and Q is selected from the group consisting of a bond, $-CH_2$ —, and -O—;

 R_{231} is selected from the group consisting of:

-hydrogen;

-alkyl;

-alkenyl;

-aryl;

-substituted aryl;

-heteroaryl;

-substituted heteroaryl;

-alkyl-X-alkyl;

-alkyl-X-aryl;

-alkyl-X-alkenyl; and

-alkyl or alkenyl substituted by one or more substituents selected from the group consisting of:

-OH;

-halogen;

 $-N(R_{631})_2;$

 $-C(O)-N(R_{631})_2;$

 $-C(S)-N(R_{631})_2;$

 $-S(O)_2$ — $N(R_{631})_2$; $-N(R_{631})$ —C(O)— C_{1-10} alkyl;

 $-N(R_{631})$ -C(S)- C_{1-10} alkyl;

 $-N(R_{631})-S(O)_2-C_{1-10}$ alkyl;

—C(O)—C₁₋₁₀ alkyl;

 $-C(O)-O-C_{1-10}$ alkyl;

 $-N_3$;

-aryl;

-substituted aryl;

-heteroaryl;

-substituted heteroaryl;

-heterocyclyl;

-substituted heterocyclyl;

-C(O)-aryl;

—C(O)-(substituted aryl);

-C(O)-heteroaryl; and

—C(O)-(substituted heteroaryl);

R₃₃₁ and R₄₃₁ are each independently selected from the group consisting of:

-hydrogen;

-halogen;

-alkyl;

10 -alkenyl;

15

25

35

50

55

-X-alkyl; and

 $-N(R_{631})_2;$

or when taken together, R_{331} and R_{431} form a fused aryl or heteroaryl ring that is unsubstituted or substituted by one or more substituents selected from the group consisting

-halogen;

-alkyl; 20

-alkenyl;

-X-alkyl; and

 $-N(R_{631})_2$;

or when taken together, R₃₃₁ and R₄₃₁ form a fused 5 to 7 membered saturated ring, containing 0 to 2 heteroatoms and unsubstituted or substituted by one or more substituents selected from the group consisting of:

-halogen;

-alkyl;

-alkenyl;

-X-alkyl; and

 $-N(R_{631})_2$;

each R₅₃₁ is independently selected from the group consisting of:

hydrogen;

 C_{1-6} alkyl;

C₃₋₇ cycloalkyl; and

benzyl; or

when Y is $-N(R_{531})C(O)$ —, $-C(O)N(R_{531})$ — $-N(R_{531})C(O)N(R_{531})$, $-N(R_{531})S(O)_2$, $-S(O_2)N$ (R_{531}) —, $-N(R_{531})C(O)O$ —, or $-OC(O)N(R_{531})$ — and the nitrogen of the $N(R_{531})$ group is bonded to Z, then R_{531} can join with Z to form a ring having the structure

each R_{631} is independently hydrogen or C_{1-10} alkyl;

 R_{731} is $C_{3\mbox{-}8}$ alkylene; and

X is —O— or —S—:

with the proviso that if W is -C(O), $-S(O)_2$, -OC(O)O—, or $-N(R_{531})C(O)N(R_{531})$ — then each Y is a bond; and pharmaceutically acceptable salts thereof.

In another embodiment, the IRM compound can be chosen 65 from 6-, 7-, 8-, or 9-position aryl or heteroaryl substituted 1H-imidazo[4,5-c]quinolin-4-amines of the following Formula (XXXII):

XXXII

$$(R_{32})_n$$
 R_{332}
 R_{332}
 R_{132}

wherein:

R₃₂ is selected from the group consisting of alkyl, alkoxy, hydroxy, and trifluoromethyl;

n is 0 or 1;

 R_{132} and R_{232} are independently selected from the group consisting of hydrogen and non-interfering substituents;

 R_{332} is selected from the group consisting of:

- —Z—Ar,
- -Z-Ar'-Y-R₄₃₂,
- —Z—Ar'-X—Y—R₄₃₂,
- -Z-Ar'-R₅₃₂, and
- -Z-Ar'-X-R₅₃₂;

Ar is selected from the group consisting of aryl and heteroaryl both of which can be unsubstituted or can be substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, alkoxy, methylenedioxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, 30 hydroxyalkyl, mercapto, cyano, carboxy, formyl, aryl, aryloxy, arylalkoxy, heteroaryl, heteroaryloxy, heteroarylalkoxy, heterocyclyl, heterocyclylalkyl, amino, alkylamino, and dialkylamino;

Ar' is selected from the group consisting of arylene and 35 heteroarylene both of which can be unsubstituted or can be substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, alkoxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, carboxy, formyl, aryl, aryloxy, arylalkoxy, 40 heteroaryl, heteroaryloxy, heteroarylalkoxy, heterocyclyl, heterocyclylalkyl, amino, alkylamino, and dialkylamino;

X is selected from the group consisting of alkylene, alkenylene, alkynylene, arylene, heteroarylene, and heterocyclylene wherein the alkylene, alkenylene, and alkynylene groups can be optionally interrupted or terminated with arylene, heteroarylene, or heterocyclylene, and optionally interrupted by one or more —O— groups;

Y is selected from the group consisting of:

- -S(O)₀₋₂---
- $-S(O)_2 N(R_{832}) ,$
- $-C(R_{632})-$
- $--C(R_{632})--O--,$
- $--O--C(R_{632})--$,
- --O--C(O)--O--.
- $-N(R_{832})-Q-$
- $--C(R_{632})--N(R_{832})--$
- $--O-C(R_{632})--N(R_{832})--,$
- $-C(R_{632})-N(OR_{932})-$

-continued
$$-R_{732}$$
 N Q , V R_{1032} , and R_{1032} , R_{1032} , R_{1032}

Z is selected from the group consisting of a bond, alkylene, alkenylene, and alkynylene;

R₄₃₂ is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, arylalkylenyl, aryloxyalkylenyl, alkylarylenyl, heteroaryl, heteroarylalkylenyl, heteroaryloxyalkylenyl, alkylheteroarylenyl, and heterocyclyl wherein the alkyl, alkenyl, alkynyl, aryl, arylalkylenyl, aryloxyalkylenyl, alkylarylenyl, heteroaryl, heteroarylalkylenyl, heteroaryloxyalkylenyl, alkylheteroarylenyl, and heterocyclyl groups can be unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, hydroxyalkyl, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, mercapto, cyano, aryl, aryloxy, arylalkyleneoxy, heteroaryl, heteroaryloxy, heteroarylalkyleneoxy, heterocyclyl, amino, alkylamino, dialkylamino, (dialkylamino)alkyleneoxy, and in the case of alkyl, alkenyl, alkynyl, and heterocyclyl, oxo;

 R_{532} is selected from the group consisting of:

each R_{632} is independently selected from the group consisting of =O and =S;

each R₇₃₂ is independently C₂₋₇ alkylene;

each R₈₃₂ is independently selected from the group consisting of hydrogen, alkyl, alkoxyalkylenyl, and arylalkyle-

 R_{932} is selected from the group consisting of hydrogen and

each R_{1032} is independently C_{3-8} alkylene;

- A is selected from the group consisting of -O-,
 - -C(O)—, $-S(O)_{0-2}$ —, $-CH_2$ —, and $-N(R_{432})$ —;
 - Q is selected from the group consisting of a bond,
 - $-C(R_{632})$ —,
 - $-C(R_{632})-N(R_{832})-W-,$
- 60 $-C(R_{632})-O$, and $-C(R_{632})-N(OR_{932})$
 - V is selected from the group consisting of $-C(R_{632})$ —,
 - $-O-C(R_{632})--, -N(R_{832})--C(R_{632})--, and -S(O)_2--;$
 - W is selected from the group consisting of a bond, -C(O)—, and $-S(O)_2$ —; and
- a and b are independently integers from 1 to 6 with the proviso that a+b is ≤ 7 ;

and pharmaceutically acceptable salts thereof.

Illustrative non-interfering R₁₃₂ substituents include:

$$\begin{array}{l} -R_{432}, \\ -X-R_{432}, \\ -X-Y-R_{432}, \\ -X-Y-X-Y-R_{432}, \\ -X-Y-X-Y-R_{432}, \text{ and} \\ -X-R_{532}; \\ \text{wherein:} \end{array}$$

each X is independently selected from the group consisting of alkylene, alkenylene, alkynylene, arylene, heteroarylene, and heterocyclylene wherein the alkylene, alkenylene, and alkynylene groups can be optionally interrupted or terminated with arylene, heteroarylene, or heterocyclylene, and optionally interrupted by one or more —O— groups;

each Y is independently selected from the group consisting 15 of:

$$\begin{array}{l} -\mathrm{S}(\mathrm{O})_{0\text{-}2}-, \\ -\mathrm{S}(\mathrm{O})_2-\mathrm{N}(\mathrm{R}_{832})-, \\ -\mathrm{C}(\mathrm{R}_{632})-, \\ -\mathrm{C}(\mathrm{R}_{632})-\mathrm{O}-, \\ -\mathrm{O}-\mathrm{C}(\mathrm{R}_{632})-, \\ -\mathrm{O}-\mathrm{C}(\mathrm{O})-\mathrm{O}-, \\ -\mathrm{N}(\mathrm{R}_{832})\mathrm{-Q}-, \\ -\mathrm{C}(\mathrm{R}_{632})-\mathrm{N}(\mathrm{R}_{832})-, \\ -\mathrm{O}-\mathrm{C}(\mathrm{R}_{632})-\mathrm{N}(\mathrm{R}_{832})-, \\ -\mathrm{C}(\mathrm{R}_{632})-\mathrm{N}(\mathrm{O}_{932})-, \end{array}$$

 R_{432} is selected from the group consisting of hydrogen, 40 alkyl, alkenyl, alkynyl, aryl, arylalkylenyl, aryloxyalkylenyl, alkylarylenyl, heteroaryl, heteroarylalkylenyl, heteroaryloxyalkylenyl, alkylheteroarylenyl, and heterocyclyl wherein the alkyl, alkenyl, alkynyl, aryl, arylalkylenyl, aryloxyalkylenyl, alkylarylenyl, heteroaryl, heteroarylalkylenyl, heteroaryloxyalkylenyl, alkylheteroarylenyl, and heterocyclyl groups can be unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, hydroxyalkyl, haloalkyl, haloalkoxy, 50 halogen, nitro, hydroxy, mercapto, cyano, aryl, aryloxy, arylalkyleneoxy, heteroaryl, heteroaryloxy, heteroarylalkyleneoxy, heterocyclyl, amino, alkylamino, dialkylamino, (dialkylamino)alkyleneoxy, and in the case of alkyl, alkenyl, alkynyl, and heterocyclyl, oxo;

 R_{532} is selected from the group consisting of:

$$\begin{array}{c}
N - C(R_{632}), & -N - S(O)_2, \\
\begin{pmatrix}
R_{732}
\end{pmatrix}, & \begin{pmatrix}
CH_2
\end{pmatrix}_a
\end{array}$$

$$-V - N - A, \text{ and}$$

-continued

$$S = \frac{1}{2} \sum_{\substack{N - C(R_{632}) - N \\ (CH_2)_b}} \left(\frac{(CH_2)_a}{(CH_2)_b} \right)$$

each R_{632} is independently selected from the group consisting of =O and =S;

each R_{732} is independently C_{2-7} alkylene;

each R₈₃₂ is independently selected from the group consisting of hydrogen, alkyl, alkoxyalkylenyl, and arylalkyle-

each R₉₃₂ is independently selected from the group consisting of hydrogen and alkyl;

each R₁₀₃₂ is independently C₃₋₈ alkylene;

A is selected from the group consisting of -O-, -C(O)—, $-S(O)_{0-2}$ —, $-CH_2$ —, and $-N(R_{432})$ —;

each Q is independently selected from the group consisting of a bond, $-C(R_{632})$ —, $-C(R_{632})$ — $C(R_{632})$ —, $-S(O)_2$ —, $-C(R_{632})$ —O—, and $-C(R_{632})$ —O—, and $-C(R_{632})$ —O—, and $-C(R_{632})$ —O—, $-S(O)_2$ —O—, $-S(O)_2$ —O—, $-S(O)_2$ —O—, and $-C(O)_3$ —O—, $-S(O)_3$ —O—, and $-C(O)_4$ —O—, $-S(O)_4$ —O—, and $-C(O)_4$ —O—, and an $-C(O)_4$ —O—, an $-C(O)_4$ —O—, an $-C(O)_4$ —O—, an $-C(O)_4$ —O—, an $-C(O)_4$ —

each V is independently selected from the group consisting of $-C(R_{632})$ —, $-O-C(R_{632})$ —, $-N(R_{832})$ — $C(R_{632})$ —, 25 and $-S(O)_2$ —;

each W is independently selected from the group consisting of a bond, $-\hat{C}(O)$ —, and $-S(O)_2$ —; and

a and b are independently integers from 1 to 6 with the proviso that a+b is ≤ 7 ;

Illustrative non-interfering R_{232} substituents include:

-X--R₅₃₂; wherein:

35

55

60

65

X is selected from the group consisting of alkylene, alkenylene, alkynylene, arylene, heteroarylene, and heterocyclylene wherein the alkylene, alkenylene, and alkynylene groups can be optionally interrupted or terminated with arylene, heteroarylene, or heterocyclylene, and optionally interrupted by one or more —O— groups;

Y is selected from the group consisting of:

$$\begin{array}{c} -\mathrm{S}(\mathrm{O})_{0\text{-}2}-, \\ -\mathrm{S}(\mathrm{O})_{2}-\mathrm{N}(\mathrm{R}_{832})-, \\ -\mathrm{C}(\mathrm{R}_{632})-, \\ -\mathrm{C}(\mathrm{R}_{632})-\mathrm{O}-, \\ \mathrm{O}-\mathrm{C}(\mathrm{R}_{632})-\mathrm{O}-, \\ \mathrm{O}-\mathrm{C}(\mathrm{O})-\mathrm{O}-, \\ -\mathrm{N}(\mathrm{R}_{832})\mathrm{-Q}-, \\ -\mathrm{C}(\mathrm{R}_{632})-\mathrm{N}(\mathrm{R}_{832})-, \\ \mathrm{O}-\mathrm{C}(\mathrm{R}_{632})-\mathrm{N}(\mathrm{R}_{832})-, \\ -\mathrm{C}(\mathrm{R}_{632})-\mathrm{N}(\mathrm{R}_{832})-, \\ -\mathrm{C}(\mathrm{R}_{632})-\mathrm{N}(\mathrm{O}\mathrm{R}_{932})-, \end{array}$$

R₄₃₂ is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, arylalkylenyl, aryloxyalkylenyl, alkylarylenyl, heteroaryl, heteroarylalkylenyl, heteroaryloxyalkylenyl, alkylheteroarylenyl, and heterocyclyl wherein the alkyl, alkenyl, alkynyl, aryl, arylalkylenyl, aryloxyalkylenyl, alkylarylenyl, heteroarylalkylenyl, heteroaryloxyalkylenyl, alkylheteroarylenyl, and heterocyclyl groups can be unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, hydroxyalkyl, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, mercapto, cyano, aryl, aryloxy, arylalkyleneoxy, heteroaryl, heteroaryloxy, heteroarylalkyleneoxy, heterocyclyl, amino, alkylamino, dialkylamino, (dialkylamino)alkyleneoxy, and in the case of alkyl, alkenyl, alkynyl, and heterocyclyl, oxo;

R₅₃₂ is selected from the group consisting of:

$$N - C(R_{632}),$$
 $N - S(O)_2,$ R_{732}
 $N - S(O)_2,$ R_{732}
 $N - S(O)_2,$ R_{732}
 $N - C(R_{632})$
 $N - C(R_{632})$

each R_{632} is independently selected from the group consisting of \longrightarrow 0 and \longrightarrow S;

each R₇₃₂ is independently C₂₋₇ alkylene;

each R_{832} is independently selected from the group consisting of hydrogen, alkyl, alkoxyalkylenyl, and arylalkylenyl;

 R_{932} is selected from the group consisting of hydrogen and alkyl;

each R_{1032} is independently C_{3-8} alkylene;

A is selected from the group consisting of
$$-O$$
—, $-C(O)$ —, $-S(O)_{0-2}$ —, $-CH_2$ —, and $-N(R_{432})$ —; Q is selected from the group consisting of a bond, $-C(R_{632})$ —, $-C(R_{632})$ — $C(R_{632})$ —, $-S(O)_2$ —, $-S(O)_2$ —, $-C(R_{632})$ — O —, and $-C(R_{632})$ — O 0, and $-C(R_{632})$ — O 1, and $-C(R_{632})$ — O 2, and $-C(R_{632})$ —, and $-C(R_{632})$ —, and $-S(O)_2$ —; 55 W is selected from the group consisting of a bond, $-C(O)$ —, and $-S(O)_2$ —; and

a and b are independently integers from 1 to 6 with the proviso that a+b is ≤ 7 ;

In some embodiments the IRM can be chosen from amide substituted 1H-imidazo[4,5-c]quinolin-4-amines, tetrahydro-1H-imidazo[4,5-c]quinolin-4-amines, 1H-imidazo[4,5-c]pyridin-4-amines, 1H-imidazo[4,5-c]naphthyridin-4-amines, or tetrahydro-1H-imidazo[4,5-c]naphthyridin-4-amines of the following Formula XXXIII.

XXXIII

$$R_{B} \xrightarrow{NH_{2}} R_{233}$$

wherein:

20

 R_{133} is selected from the group consisting of: —X'—C(O)—N(R_{133} ')(R_{133} ") and

$$X''$$
 $C(O)$ N $C(H_2)_a$ A' ;

X' is selected from the group consisting of — $CH(R_{933})$ —, — $CH(R_{933})$ -alkylene-, and — $CH(R_{933})$ -alkenylene-;

X" is selected from the group consisting of —CH(R₉₃₃)—,

—CH(R₉₃₃)-alkylene-, and —CH(R₉₃₃)-alkenylene-;

wherein the alkylene and alkenylene are optionally interrupted with one or more —O— groups;

 R_{133} ' and R_{133} " are independently selected from the group consisting of:

hydrogen, alkyl, alkenyl,

> aryl, arylalkylenyl,

heteroaryl, heteroarylalkylenyl,

heterocyclyl,

neterocyclyl,

heterocyclylalkylenyl, and

alkyl, alkenyl, aryl, arylalkylenyl, heteroaryl, heteroarylalkylenyl, heterocyclyl, or heterocyclylalkylenyl, substituted by one or more substituents selected from the group consisting of:

hydroxy,

alkyl,

45

haloalkyl,

hydroxyalkyl,

alkoxy,

haloalkoxy,

halogen,

cyano,

nitro,

muo,

amino,

alkylamino,

dialkylamino,

arylsulfonyl, and

alkylsulfonyl;

A' is selected from the group consisting of —O—, —C(O)—, —CH $_2$ —, —S(O) $_{0\text{-}2}$ —, and —N(Q-R $_{433}$)—;

a and b are independently integers from 1 to 6 with the proviso that a+b is ≤ 7 ;

 R_A and R_B are independently selected from the group consisting of:

hydrogen,

halogen,

alkyl,

alkenyl,

49

alkoxy, alkylthio, and

 $-N(R_{933})_2;$

or R_A and R_B taken together form either a fused aryl ring that is unsubstituted or substituted by one or more R_a groups, or a fused 5 to 7 membered saturated ring that is unsubstituted or substituted by one or more R_a groups;

or R_A and R_B taken together form a fused heteroaryl or 5 to 7 membered saturated ring containing one heteroatom selected from the group consisting of N and S, wherein the heteroaryl ring is unsubstituted or substituted by one or more R_b groups, and the 5 to 7 membered saturated ring is unsubstituted or substituted by one or more R_b groups;

each R_a is independently selected from the group consisting of halogen, alkyl, haloalkyl, alkoxy, and $-N(R_{933})_2$;

each R_b is independently selected from the group consisting of halogen, hydroxy, alkyl, haloalkyl, alkoxy, and $-N(R_{933})_2$;

each R_c is independently selected from the group consisting of halogen, hydroxy, alkyl, alkenyl, haloalkyl, alkoxy, alkylthio, and —N(R_{933})₂;

R₂₃₃ is selected from the group consisting of:

—R₄₃₃,

 $-X - R_{433}$

 $-X-R_{533};$

X is selected from the group consisting of alkylene, alkenylene, alkynylene, arylene, heteroarylene, and heterocyclylene wherein the alkylene, alkenylene, and alkynylene groups are optionally interrupted or terminated by arylene, heteroarylene or heterocyclylene and optionally interrupted by one or more —O— groups;

Y is selected from the group consisting of:

—S(O)₀₋₂—, —S(O)₂—N(R₈₃₃)—,

 $--C(R_{633})--,$

 $--C(R_{633})--O-$

 $-C(R_{633})$,

-O-C(O)-O-

 $-N(R_{833})-Q-$

 $--C(R_{633})--N(R_{833})--,$

--O--C(R₆₃₃)--N(R₈₃₃)-

 $-C(R_{633})-N(OR_{933})-$

 $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

50

each R₄₃₃ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, arylalkylenyl, aryloxyalkylenyl, alkylarylenyl, heteroarylalkylenyl, heteroaryloxyalkylenyl, alkylheteroarylenyl, and heterocyclyl wherein the alkyl, alkenyl, alkynyl, aryl, arylalkylenyl, aryloxyalkylenyl, alkylarylenyl, heteroarylenyl, heteroarylenyl, and heterocyclyl groups are unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, hydroxyalkyl, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, mercapto, cyano, aryl, aryloxy, arylalkyleneoxy, heteroaryl, heteroaryloxy, heteroarylalkyleneoxy, heterocyclyl, amino, alkylamino, dialkylamino, (dialkylamino)alkyleneoxy, and in the case of alkyl, alkenyl, alkynyl, and heterocyclyl, oxo;

 R_{533} is selected from the group consisting of:

each R₆₃₃ is independently selected from the group consisting of —O and —S;

each R_{733} is independently C_{2-7} alkylene;

each R_{833} is independently selected from the group consisting of hydrogen, alkyl, alkoxyalkylenyl, and arylalkylenyl:

each R₉₃₃ is independently selected from the group consisting of hydrogen and alkyl;

each R_{1033} is independently C_{3-8} alkylene;

A is selected from the group consisting of —O—,

-C(O)—, $-S(O)_{0-2}$ —, $-CH_2$ —, and $-N(R_{433})$ —;

 $\begin{array}{lll} \text{ each Q is independently selected from the group consisting of a bond, } & -\text{C}(R_{633}) -\text{,} & -\text{C}(R_{633}) -\text{,} & -\text{S}(O)_2 -\text{,} \\ & -\text{C}(R_{633}) -\text{N}(R_{833}) -\text{W} -\text{,} & -\text{S}(O)_2 -\text{N}(R_{833}) -\text{,} \\ \end{array}$

 $-C(R_{633})-O-$, and $-C(R_{633})-N(OR_{933})-$;

V is selected from the group consisting of — $C(R_{633})$ —, —O— $C(R_{633})$ —, — $N(R_{833})$ — $C(R_{633})$ —, and — $S(O)_2$ —; and

each W is independently selected from the group consisting of a bond, -C(O)—, and $-S(O)_2$ —;

with the proviso that when R_A and R_B form a fused heteroaryl or 5 to 7 membered saturated ring containing one heteroatom selected from the group consisting of N and S, wherein the heteroaryl ring is unsubstituted or substituted by

one or more R_b groups, and the 5 to 7 membered saturated ring is unsubstituted or substituted by one or more R_c groups, then R_{133} can also be

or a pharmaceutically acceptable salt thereof.

In another embodiment, the IRM compound can be chosen from aryloxy or arylalkyleneoxy substituted 1H-imidaz[4,5-c]quinoline-4-amines of the following Formula XXXIV:

15

45

50

55

XXXIV

$$(R_{34})_n$$
 R_{234}
 R_{334}
 R_{334}

wherein:

R₃₃₄ is selected from the group consisting of:

- –Z—Ar,
- —Z—Ar'-Y—R₄₃₄,
- —Z—Ar'-X—Y—R₄₃₄,
- -Z-Ar'-R₅₃₄, and
- –Z—Ar'-X—R₅₃₄;

Z is selected from the group consisting of a bond, alkylene, alkenylene, and alkynylene wherein alkylene, alkenylene, and alkynylene are optionally interrupted with —O-

Ar is selected from the group consisting of aryl and heteroaryl both of which can be unsubstituted or can be substi- 25 tuted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, alkoxy, methylenedioxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, carboxy, formyl, aryl, aryloxy, arylalkyleneoxy, heteroaryl, heteroaryloxy, heteroary- 30 lalkyleneoxy, heterocyclyl, heterocyclylalkylenyl, amino, alkylamino, and dialkylamino;

Ar' is selected from the group consisting of arylene and heteroarylene both of which can be unsubstituted or can be substituted by one or more substituents independently 35 selected from the group consisting of alkyl, alkenyl, alkoxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, carboxy, formyl, aryl, aryloxy, arylalkyleneoxy, heteroaryl, heteroaryloxy, heteroarylalkyleneoxy, heterocyclyl, heterocyclylalkylenyl, amino, alkylamino, and 40 dialkylamino;

R₃₄ is selected from the group consisting of alkyl, alkoxy, hydroxy, halogen, and trifluoromethyl;

n is 0 or 1;

R₁₃₄ is selected from the group consisting of:

- -R₄₃₄,
- -X-Y-R₄₃₄,
- -X-Y-X-Y-R₄₃₄, and

-X-R₅₃₄;

R₂₃₄ is selected from the group consisting of:

- -R₄₃₄,
- $-X \stackrel{\text{T.--}}{--} R_{434}$, $-X \stackrel{\text{---}}{--} Y \stackrel{\text{---}}{--} R_{434}$, and

each X is independently selected from the group consisting of alkylene, alkenylene, alkynylene, arylene, heteroarylene, and heterocyclylene wherein the alkylene, alkenylene, and alkynylene groups can be optionally interrupted by arylene, heteroarylene or heterocyclylene or by one or more —O— 60 sisting of =O and =S; groups;

each Y is independently selected from the group consisting of:

- -S(O)₀₋₂- $-S(O)_2$ — $N(R_{834})$ —,
- $-C(R_{634})$ —,
- $-C(R_{634})-O-$

—O—C(R₆₃₄)—, -O-C(O)-O-, $-N(R_{834})-Q-,$ $--C(R_{634})--N(R_{834})- -O-C(R_{634})-N(R_{834})$ $-C(R_{634})-N(OR_{934})-$

each R₄₃₄ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, arylalkylenyl, aryloxyalkylenyl, alkylarylenyl, heteroaryl, heteroarylalkylenyl, heteroaryloxyalkylenyl, alkylheteroarylenyl, and heterocyclyl wherein the alkyl, alkenyl, alkynyl, aryl, arylalkylenyl, aryloxyalkylenyl, alkylarylenyl, heteroaryl, heteroarylalkylenyl, heteroaryloxyalkylenyl, alkylheteroarylenyl, and heterocyclyl groups can be unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, hydroxyalkyl, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, mercapto, cyano, aryl, aryloxy, arylalkyleneoxy, heteroaryl, heteroaryloxy, heteroarylalkyleneoxy, heterocyclyl, amino, alkylamino, dialkylamino, (dialkylamino)alkyleneoxy, and in the case of alkyl, alkenyl, alkynyl, and heterocyclyl, oxo;

each R₅₃₄ is independently selected from the group consisting of:

each R_{634} is independently selected from the group con-

each R_{734} is independently C_{2-7} alkylene;

each R₈₃₄ is independently selected from the group consisting of hydrogen, alkyl, alkoxyalkylenyl, and arylalkylenyl;

- each R₉₃₄ is independently selected from the group consisting of hydrogen and alkyl;
 - each R_{1034} is independently C_{3-8} alkylene;

each A is independently selected from the group consisting of -O—, -C(O)—, $-S(O)_{0-2}$ —, $-CH_2$ —, and $-N(R_{434})$ —;

each V is independently selected from the group consisting of —C(R $_{634}$)—, —O—C(R $_{634}$)—, —N(R $_{834}$)—C(R $_{634}$)—, and —S(O) $_2$ —;

each W is independently selected from the group consisting of a bond, —C(O)—, and —S(O)₂—; and

a and b are independently integers from 1 to 6 with the proviso that a+b is ≤ 7 ;

or a pharmaceutically acceptable salt thereof.

Herein, "non-interfering" means that the ability of the compound or salt to modulate (e.g., induce or inhibit) the biosynthesis of one or more cytokines is not destroyed by the non-interfering substituent.

As used herein, the terms "alkyl", "alkenyl", "alkynyl" and 20 the prefix "alk-" are inclusive of both straight chain and branched chain groups and of cyclic groups, i.e. cycloalkyl and cycloalkenyl. Unless otherwise specified, these groups contain from 1 to 20 carbon atoms, with alkenyl and alkynyl groups containing from 2 to 20 carbon atoms. In some 25 embodiments, these groups have a total of up to 10 carbon atoms, up to 8 carbon atoms, up to 6 carbon atoms, or up to 4 carbon atoms. Cyclic groups can be monocyclic or polycyclic and preferably have from 3 to 10 ring carbon atoms. Exemplary cyclic groups include cyclopropyl, cyclopropylmethyl, 30 cyclopentyl, cyclohexyl, adamantyl, and substituted and unsubstituted bornyl, norbornyl, and norbornenyl.

Unless otherwise specified, "alkylene", "alkenylene", and "alkynylene" are the divalent forms of the "alkyl", "alkenyl", and "alkynyl" groups defined above. Likewise, "alkylenyl", 35 "alkenylenyl", and "alkynylenyl" are the divalent forms of the "alkyl", "alkenyl", and "alkynyl" groups defined above. For example, an arylalkylenyl group comprises an alkylene moiety to which an aryl group is attached.

The term "haloalkyl" is inclusive of groups that are substituted by one or more halogen atoms, including perfluorinated groups. This is also true of other groups that include the prefix "halo-". Examples of suitable haloalkyl groups are chloromethyl, trifluoromethyl, and the like. Similarly, the term "fluoroalkyl" is inclusive of groups that are substituted by one or 45 more fluorine atoms, including perfluorinated groups (e.g., trifluoromethyl).

The term "aryl" as used herein includes carbocyclic aromatic rings or ring systems. Examples of aryl groups include phenyl, naphthyl, biphenyl, fluorenyl and indenyl.

The term "heteroatom" refers to the atoms O, S, or N.

The term "heteroaryl" includes aromatic rings or ring systems that contain at least one ring heteroatom (e.g., O, S, N). Suitable heteroaryl groups include furyl, thienyl, pyridyl, quinolinyl, isoquinolinyl, indolyl, isoindolyl, triazolyl, pyrrolyl, tetrazolyl, imidazolyl, pyrazolyl, oxazolyl, thiazolyl, benzofuranyl, benzothiophenyl, carbazolyl, benzoxazolyl, pyrimidinyl, benzimidazolyl, quinoxalinyl, benzothiazolyl, naphthyridinyl, isoxazolyl, isothiazolyl, purinyl, quinazolinyl, pyrazinyl, 1-oxidopyridyl, pyridazinyl, triazinyl, tetrazionyl, oxadiazolyl, thiadiazolyl, and so on.

The term "heterocyclyl" includes non-aromatic rings or ring systems that contain at least one ring heteroatom (e.g., O, S, N) and includes all of the fully saturated and partially unsaturated derivatives of the above mentioned heteroaryl groups. Exemplary heterocyclic groups include pyrrolidinyl, tetrahydrofuranyl, morpholinyl, thiomorpholinyl, piperidi-

54

nyl, piperazinyl, thiazolidinyl, imidazolidinyl, isothiazolidinyl, tetrahydropyranyl, quinuclidinyl, homopiperidinyl, homopiperazinyl, and the like.

The terms "arylene," "heteroarylene," and "heterocyclylene" are the divalent forms of the "aryl," "heteroaryl," and "heterocyclyl" groups defined above. Likewise, "arylenyl," "heteroarylenyl," and "heterocyclylenyl" are the divalent forms of the "aryl," "heteroaryl," and "heterocyclyl" groups defined above. For example, an alkylarylenyl group comprises an arylene moiety to which an alkyl group is attached.

Unless otherwise specified, the aryl, heteroaryl, and heterocyclyl groups of Formulas IX-XXXIV can be unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, alkoxy, methylenedioxy, ethylenedioxy, alkylthio, haloalkyl, haloalkoxy, haloalkylthio, halogen, nitro, hydroxy, mercapto, cyano, carboxy, formyl, aryl, aryloxy, arylthio, arylalkoxy, arylalkylthio, heteroaryl, heteroaryloxy, heteroarylthio, heteroarylalkoxy, heteroarylalkylthio, amino, alkylamino, dialkylamino, heterocyclyl, heterocycloalkyl, alkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl, haloalkylcarbonyl, haloalkoxycarbonyl, alkylthiocarbonyl, arylcarbonyl, heteroarylcarbonyl, heterocyclylcarbonyl, aryloxycarbonyl, heteroaryloxycarbonyl, arylthiocarbonyl, heteroarylthiocarbonyl, alkanoyloxy, alkanoylthio, alkanoylamino, aroyloxy, aroylthio, aroylamino, alkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryldiazinyl, alkylsulfonylamino, arylsulfonylamino, arylalkylsulfonylamino, alkylcarbonylamino, alkenylcarbonylamino, arylcarbonylamino, arylalkylcarbonylamino, heteroarylcarbonylamino, heteroarylalkycarbonylamino, alkylsulfonylamino, alkenylsulfonylamino, arylsulfonylamino, arylalkylsulfonylamino, heteroarylsulfonylamino, heteroarylalkylsulfonylamino, alkylaminocarbonyl, dialkylaminocarbonyl, arylaminocarbonyl, arylalkylaminocarbonyl, alkenylaminocarbonyl, heteroarylaminocarbonyl, heteroarylalkylaminocarbonyl, alkylaminocarbonylamino, alkenylaminocarbonylamino, arylaminocarbonylamino, arylalkylaminocarbonylamino, heteroarylaminocarbonylamino, heteroarylalkylaminocarbonylamino and, in the case of heterocyclyl, oxo. If any other groups are identified as being "substituted" or "optionally substituted", then those groups can also be substituted by one or more of the above enumerated substituents.

When a group (or substituent or variable) is present more that once in any Formula described herein, each group (or substituent or variable) is independently selected, whether explicitly stated or not. For example, for the formula $-N(R_{631})_2$ each R_{631} group is independently selected. In another example, when an R_{232} and an R_{332} group both contain an R_{432} group, each R_{432} group is independently selected. In a further example, when more than one Y group is present (i.e. R_{232} and R_{332} both contain a Y group) and each Y group contains one or more R_{832} groups, then each Y group is independently selected, and each R_{832} group is independently selected

In certain embodiments, the immune response modifier is selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, 1,2-bridged imidazoquinoline amines, imidazonaphthyridine amines, imidazotetrahydronaphthyridine amines, oxazoloquinoline amines, thiazoloquinoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines, pyrazolopyridine amines, pyrazoloquinoline amines, tetrahydropyrazoloquinoline amines, pyrazolonaphthyridine amines, tetrahydropyrazolonaphthyridine amines, tet

to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines, and combinations thereof.

In certain embodiments, the immune response modifier is selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, and combinations thereof.

In certain embodiments, the immune response modifier is selected from the group consisting of amide substituted imidazoquinoline amines, sulfonamide substituted imidazoquinoline amines, urea substituted imidazoquinoline amines, aryl ether substituted imidazoquinoline amines, heterocyclic ether substituted imidazoquinoline amines, amido ether substituted imidazoquinoline amines, sulfonamido ether substituted imidazoquinoline amines, urea substituted imidazoquinoline ethers, thioether substituted imidazoquinoline amines, 6-, 7-, 8-, or 9-aryl, heteroaryl, aryloxy or arylalkyleneoxy substituted imidazoquinoline amines, amide substituted tetrahydroimidazoquinoline amines, sulfonamide sub- 20 charged thickeners include carboxylic acid and/or carboxystituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline amines, aryl ether substituted tetrahydroimidazoquinoline amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amido ether substituted tetrahydroimidazoquinoline amines, sulfonamido 25 ether substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline ethers, thioether substituted tetrahydroimidazoquinoline amines, amide substituted imidazopyridine amines, sulfonamide substituted imidazopyridine amines, urea substituted imidazopyridine 30 amines, aryl ether substituted imidazopyridine amines, heterocyclic ether substituted imidazopyridine amines, amido ether substituted imidazopyridine amines, sulfonamido ether substituted imidazopyridine amines, urea substituted imidazopyridine ethers, thioether substituted imidazopyridine 35 amines, and combinations thereof.

In certain embodiments, the immune response modifier is selected from the group consisting of amide substituted imidazoquinoline amines, urea substituted imidazoquinoline amines, and combinations thereof. Cosolvents

Aqueous gel formulations of the invention include a watermiscible cosolvent. The water-miscible cosolvent assists in dissolving the immune response modifier in salt form. The cosolvent can be a single component or a combination. 45 Examples of suitable cosolvents include monopropylene glycol, dipropylene glycol, hexylene glycol, butylene glycol, glycerin, polyethylene glycol (of various molecular weights, e.g., 300 or 400), diethylene glycol monoethyl ether, and combinations thereof. Monopropylene glycol (i.e., propylene 50 glycol) is particularly preferred as a cosolvent.

In certain embodiments, the cosolvent (or combination of cosolvents) is present in an amount of at least 10 wt-%, in other embodiments in an amount of greater than 25 wt-%, and in other embodiments at least 30 wt-%, based on the total 55 weight of the aqueous gel. In certain embodiments, the cosolvent (or combination of cosolvents) is present in an amount of no greater than 90 wt-%, in other embodiments no greater than 80 wt-%, in other embodiments no greater than 70 wt-%, in other embodiments no greater than 60 wt-%, based on the 60 total weight of the aqueous gel.

In certain embodiments, water is present in an amount of at least 10 wt-%, in other embodiments at least 15 wt-%, in other embodiments at least 20 wt-%, and in other embodiments at least 25 wt-%, based on the total weight of the aqueous gel. In certain embodiments, water is present in an amount of no greater than 95 wt-%, in other embodiments no greater than

56

90 wt-%, and in other embodiments no greater than 85 wt-%, based on the total weight of the aqueous gel.

Aqueous gel formulations of the invention include a negatively charged thickener, preferably at least two negatively charged thickeners (typically of differing charge density). Preferably the thickeners are mucoadhesives. Examples of suitable negatively charged thickeners include: cellulose ethers such as carboxymethylcellulose sodium; polysaccharide gums such as xanthan gum; and acrylic acid polymers (i.e., homopolymers and copolymers) made from acrylic acid crosslinked with, for example, allyl sucrose or allyl pentaerythritol such as those polymers designated as carbomers in the United States Pharmacopoeia, and acrylic acid polymers made from acrylic acid crosslinked with divinyl glycol such as those polymers designated as polycarbophils in the United States Pharmacopoeia. Combinations of such thickeners can be used if desired.

In some embodiments of the invention, the negatively late groups. Examples of such agents include carboxymethylcellulose sodium, xanthan gum, and the acrylic acid polymers. Preferably, certain embodiments of the present invention include a combination of an acrylic acid polymer (i.e., polyacrylic acid polymer) and a polysaccharide gum (e.g., xanthan gum).

Carbomers are exemplary (and preferred) acrylic acid polymers. Suitable carbomers include, for example, those commercially available under the trade designation CAR-BOPOL (all available from Noveon, Inc., Cleveland, Ohio, USA). CARBOPOL polymers can provide a range of viscosities. For example, a 0.5% solution of CARBOPOL 971P or CARBOPOL 941 has a viscosity of 4,000-11,000 cPs (pH 7.5, 25° C., Brookfield viscometer at 20 rpm); a 0.5% solution of CARBOPOL 934P or CARBOPOL 974P has a viscosity of 29,400-39,400 cPs (pH 7.5, 25° C., Brookfield viscometer at 20 rpm); and a 0.5% solution of CARBOPOL 940 or CAR-BOPOL 980 has a viscosity of 40,000-60,000 cPs (pH 7.5, 25° C., Brookfield viscometer at 20 rpm). For certain embodi-40 ments, carbomers such as CARBOPOL 934P, CARBOPOL 974P, CARBOPOL 940, and CARBOPOL 980 are preferred. A particularly preferred carbomer is CARBOPOL 974P.

For certain embodiments, it is desirable to have a relatively highly crosslinked carbomer. Preferred relatively highly crosslinked carbomers include CARBOPOL 974P, CAR-BOPOL 940, and CARBOPOL 980. A particularly preferred relatively highly crosslinked carbomer is CARBOPOL 974P.

Suitable polycarbophils include, for example, those commercially available under the trade designation NOVEON polycarbophils (all available from Noveon, Inc., Cleveland, Ohio, USA). A preferred polycarbophil is NOVEON AA-1 USP Polycarbophil.

Various grades of carboxymethylcellulose sodium are commercially available that have differing aqueous viscosities. Aqueous 1% weight by volume (w/v) solutions with viscosities of 5-13,000 cps may be obtained. Examples include carboxymethylcellulose sodium, high viscosity, USP (CA194); carboxymethylcellulose sodium, medium viscosity, USP (CA192); and carboxymethylcellulose sodium, low viscosity, USP (CA193); all of which are available from Spectrum Chemicals and Laboratory Products, Inc., Gardena, Calif., USA; and AKUCELL AF 3085 (high viscosity), AKU-CELLAF 2785 (medium viscosity), and AKUCELL AF 0305 (low viscosity), all of which are available from Akzo Nobel Functional Chemicals, Amersfoort, The Netherlands.

In certain embodiments, the thickener system includes a non-ionic thickener. Examples of suitable non-ionic thicken-

ers include hydroxyethyl cellulose, hydroxymethyl cellulose, and hydroxypropyl cellulose. If included, the weight ratio of non-ionic thickener to negatively charged thickener (total weight of all negatively charged thickeners if more than one negatively charged thickener is included) is within the range of 1:4 to 1:10. In certain embodiments, the weight ratio is within the range of 1:4 to 1:7.

Hydroxypropyl cellulose is commercially available in a number of different grades that have various solution viscosities. Examples include KLUCEL HF and KLUCEL MF, both 10 of which are available from the Aqualon Division of Hercules Incorporated, Wilmington, Del., USA.

In certain embodiments, the thickener system includes a polysaccharide gum and an acrylic acid polymer. Preferably, the weight ratio of polysaccharide gum to acrylic acid polymer is within a range of 1:20 to 20:1. In certain embodiments, the weight ratio is within a range of 1:10 to 10:1, in other embodiments the weight ratio is within a range of 1:5 to 5:1, in other embodiments the weight ratio is within a range of 1:3 greater to 3:1, and in other embodiments the weight ratio is within a 20 ous gel. range of 1:2 to 2:1. A particularly preferred ratio is 1:2.

The thickener system is present in formulations of the invention in an amount sufficient to bring the viscosity to a level of at least than 1000 Centipoise (cps), preferably at least 5,000 cps, more preferably at least 8000 cps, and most preferably at least 10,000 cps. The viscosity is determined at 20±0.5° C. using a Haake RS series rheometer equipped with a 35 mm 2° cone using a controlled rate step test between 1 and 80 s⁻¹ with an interpolation at 16 s⁻¹ for viscosity versus shear rate.

In certain embodiments, the amount or concentration of the thickener system is at least 0.1 wt-%, in other embodiments at least 0.5 wt-%, in other embodiments at least 1.0 wt-%, and in other embodiments at least 1.5 wt-%, based on the total weight of the aqueous gel. In certain embodiments, the 35 amount of the thickener system is no greater than 7 wt-%, in other embodiments no greater than 6 wt-%, in other embodiments no greater than 5 wt-%, and in other embodiments no greater than 4 wt-%, based on the total weight of the aqueous gel.

pH Adjusting Agents and Buffers

Aqueous gel formulations of the invention can additionally include a pharmaceutically acceptable pH adjusting agent to adjust the pH of the formulation to the desired range. Generally, the pH is at least 2, and preferably at least 3. Generally, 45 the pH is no greater than 6, preferably no greater than 5, and more preferably no greater than 4. The pH adjusting agent may be any pharmaceutically acceptable acid or base. Examples of suitable pH adjusting agents include hydrochloric acid, sodium hydroxide, tromethamine, and potassium 50 hydroxide. Combinations of such agents can be used if desired.

Aqueous gel formulations of the invention can additionally include a pharmaceutically acceptable buffer to maintain the pH of the formulations in the desired range (preferably, 2 to 6, 55 and more preferably, 3 to 4). The buffer may be any pharmaceutically acceptable buffer that provides one or more of the desired pH ranges. Examples of suitable buffers include buffers containing lactic acid, tartaric acid, citric acid, and succinic acid. Combinations of buffers can be used if desired. 60 The buffers can also function as tonicity adjusting agents. Preservatives

Aqueous gel formulations of the invention can additionally include a preservative. The preservative includes one or more compounds that inhibit microbial growth (e.g., fungal and 65 bacterial growth) within the composition. Suitable preservatives are water soluble and include quaternary ammonium

58

compounds (e.g., benzalkonium chloride), benzethonium chloride, parabens (e.g., methylparaben, propylparaben), boric acid, isothiazolinone, organic acids (e.g., sorbic acid), alcohols (e.g., phenyl ethyl alcohol, cresol, chlorobutanol, benzyl alcohol), carbamates, chlorhexidine, and combinations thereof. Preferably, the preservative is methylparaben, propylparaben, or combinations thereof. Certain water-miscible cosolvents, such as glycerin or propylene glycol, also have antimicrobial properties.

In certain embodiments, the preservative (or combination of preservatives) is present in an amount of at least 0.005 wt-%, in other embodiments at least 0.01 wt-%, in other embodiments at least 0.015 wt-%, and in other embodiments at least 0.02 wt-%, based on the total weight of the aqueous gel. In certain embodiments, the preservative (or combination of preservatives) is present in an amount of no greater than 1.0 wt-%, in other embodiments at most 0.75 wt-%, in other embodiments at most 0.5 wt-%, and in other embodiments no greater than 0.4 wt-%, based on the total weight of the aqueous gel.

Chelating Agents

Aqueous gel formulations of the invention can additionally include a chelating agent. Chelating agents are compounds that complex metal ions. Examples of suitable chelating agents include ethylenediaminetetracetic acid (EDTA) and derivatives thereof such as the disodium salt, ethylenediaminetetracetic acid disodium salt dehydrate, and combinations thereof. Preferably, the chelating agent is ethylenediaminetetracetic acid disodium salt dihydrate (edetate disodium).

In certain embodiments, the chelating agent (or combination of chelating agents) is present in an amount of at least 0.001 wt-%, in other embodiments at least 0.01 wt-%, and in other embodiments at least 0.02 wt-%, based on the total weight of the aqueous gel. In certain embodiments, the chelating agent (or combination of chelating agents) is present in an amount of no greater than 2.0 wt-%, in other embodiments no greater than 1.5 wt-%, and in other embodiments no greater than 1.0 wt-%, based on the total weight of the aqueous gel.

Applications

Aqueous gel formulations of the present invention can be used to treat or prevent conditions associated with mucosal tissue. In some embodiments, the invention provides methods that are particularly advantageous for the topical application to the cervix for treatment of cervical conditions such as cervical dysplasias including dysplasia associated with human papillomavirus (HPV), low-grade squamous intraepithelial lesions, high-grade squamous intraepithelial lesions, atypical squamous cells of undetermined significance (typically, with the presence of high-risk HPV), and cervical intraepithelial neoplasia (CIN).

The present invention also provides methods of treating a mucosal associated condition. Alternatively stated, the present invention provides methods of treating a condition associated with mucosal tissue.

In the methods of the present invention, the aqueous gels of the present invention may be applied once a week or several times a week. For example, the aqueous gel may be applied twice a week, three times a week, five times a week, or even daily.

In the methods of the present invention, the applications of the aqueous gels of the present invention may extend for a total time period of at least one week, at least two weeks, at least three weeks, at least one month, at least two months, at least three months, or more, depending on the desired treatment regimen.

The actual dosing (treatment) regimen used for a given condition or subject may depend at least in part on many factors known in the art, including, but not limited to, the physical and chemical nature of the IRM compound, the nature of the delivery material, the amount of the IRM compound being administered, the state of the subject's immune system (e.g., suppressed, compromised, stimulated), the method of administering the IRM compound, and the species to which the IRM compound is being administered.

The methods of the present invention may be applicable for 10 any suitable subject. Suitable subjects include, but are not limited to, animals such as, but not limited to, humans, non-human primates, rodents, dogs, cats, horses, pigs, sheep, goats, cows, or birds.

The methods of the present invention are suitable for a 15 variety of medical objectives, including therapeutic, prophylactic (e.g., as a vaccine adjuvant), or diagnostic. As used herein, "treating" a condition or a subject includes therapeutic, prophylactic, and diagnostic treatments.

The term "an effective amount" (e.g., therapeutically or 20 prophylactically) means an amount of the compound sufficient to induce a desired (e.g., therapeutic or prophylactic) effect, such as cytokine induction, inhibition of TH2 immune response, antiviral or antitumor activity, reduction or elimination of neoplastic cells. The amount of the IRM compound 25 that will be therapeutically effective in a specific situation will depend on such things as the activity of the particular compound, the dosing regimen, the application site, the particular formulation and the condition being treated. As such, it is generally not practical to identify specific administration 30 amounts herein; however, those skilled in the art will be able to determine appropriate therapeutically effective amounts based on the guidance provided herein and information available in the art pertaining to these compounds.

The aqueous gels of the present invention may be used for 35 the application of an IRM compound to the affected area of a subject for treating a dermal and/or mucosal condition. Examples of such conditions include herpes, keloids, warts, molluscum, or combinations thereof. It will be understood by one of skill in the art that such conditions (e.g., warts) can be 40 on both mucosal and dermal tissue.

The aqueous gels of the present invention may be used for the application of an IRM compound to mucosal tissue for the treatment of a mucosal associated condition.

As used herein, a "mucosal associated condition" means an 45 inflammatory, infectious, neoplastic, or other condition that involves mucosal tissue or that is in sufficient proximity to a mucosal tissue to be affected by a therapeutic agent topically applied to the mucosal tissue. Examples of such conditions include a papilloma virus infection of the cervix, cervical 50 dysplasias including dysplasia associated with human papillomavirus (HPV), low-grade squamous intraepithelial lesions, high-grade squamous intraepithelial lesions, atypical squamous cells of undetermined significance (typically, with the presence of high risk HPV), and cervical intraepithelial 55 neoplasia, an atopic allergic response, allergic rhinitis, a neoplastic lesion, and a premalignant lesion.

As used herein, "mucosal tissue" includes mucosal membranes such as buccal, gingival, nasal, ocular, tracheal, bronchial, gastrointestinal, rectal, urethral, ureteral, vaginal, cervical, and uterine mucosal membranes. For example, one could treat oral lesions, vaginal lesions, or anal lesions by the methods described. One could also use the methods in combination with mucosal application of vaccines.

In one embodiment, the IRM compound can be applied to 65 vaginal or supravaginal mucosal tissue for the treatment of a cervical dysplasia. In other embodiments, an IRM can be

60

applied to the mucosal tissue of the rectum for the treatment of, e.g., anal canal condyloma.

Cervical dysplasias to be treated by the methods of the present invention preferably include dysplastic conditions such as low-grade squamous intraepithelial lesions, high-grade squamous intraepithelial lesions, atypical squamous cells of undetermined significance (typically, with the presence of high-risk HPV), and cervical intraepithelial neoplasia (CIN).

Approximately 16,000 new cases of invasive cancer of the cervix are diagnosed each year in the U.S. despite extensive screening of women to detect predictive cellular changes. There are also about 3,000 deaths due to cervical cancer in the U.S. alone and this is usually secondary to not detecting the primary cancerous lesion in a timely manner.

The Papanicoulaou Test (Pap smear) is the screening test that has been accepted since the 1950s as the method to detect abnormal cells of the cervix, including inflammation and dysplasia, which includes cervical cancer. This screening test has been widely adopted in industrialized countries and has had a profound impact on mortality associated with cervical cancers. An abnormal Pap smear prompts close observation for disease progression with the potential for the therapeutic interventions of destruction or excision of cancerous or precancerous tissues. These excisional treatments are expensive, uncomfortable and associated with failure rates that range from 2% to 23% and with higher failure rates reported for the more advanced lesions. Failure rates have recently been documented to approximate 10% following laser treatment.

The etiologic agent for cervical cancer was originally thought to be the herpes virus. However, there was a gradual shift from this focus on herpes virus to the human papillomavirus (HPV). Improved experimental methods over the recent past have allowed the characterization of a full spectrum of HPV subtypes, which has resulted in the conclusion that the high risk HPV types (e.g., HPV 16, 18, and less frequently 31, 33, 35, 45) are very likely the exclusive initiating factor (i.e., oncogenic agent) for cervical dysplasia and subsequent cancers. The mechanism of HPV transformation of the normal cell to a dysplastic cell is associated with the HPV encoded oncoproteins (E6 and E7) from the high risk genotypes binding the cell's tumor suppressor gene products p53 and Rb resulting in disruption of the cell cycle control mechanism in which p53 and Rb play an important role. In addition, the application of these molecular methods has resulted in the epidemilogic observation that HPV is isolated from approximately 93% of cervical tumors, which has further strengthened the generally accepted conclusion that HPV infection is the most important initiating agent for cervical cancer.

Exposure to HPV is common in sexually active women, but it does not invariably lead to dysplasia or cancer in most of the exposed women. Infected women who harbor persistent viral DNA have about five times the chance of persistent dysplasia compared to women who are able to eradicate the virus. The importance of cell-mediated immune response to HPV infection is illustrated by the observation that the antibody mediated immune response is not effective in eliminating established infections as is demonstrated by the fact that patients with invasive cervical cancer often exhibit high antibody levels against the viral E6 and E7 proteins. This particular antibody response probably reflects extensive antigen exposure in the face of increasing tumor burden. In contrast to the apparently inconsequential effect of the humoral immune response; the cell-mediated immune response (Th-1-Type Response) appears to be effective in controlling tumor progression. Regression of intraepithelial lesions is accompanied by a cellular infiltrate consisting of CD4+ T-cells, CD8+

61

T-cells, natural killer cells (NK) and macrophages. This inflammatory infiltrate was usually associated with tumor regression that is in contrast to women who lack the ability to mount this inflammatory response and who experience disease progression. In addition, patients with a defect in cell-mediated immunity have increased cervical cancer rates, whereas those with defects in the production of antibody do not exhibit the same susceptibility.

Aqueous gels of the present invention may be applied to mucosal tissue with the use of a delivery device. Suitable devices include barrel type applicators, cervical caps, diaphragms, and solid matrices such as tampons, cotton sponges, cotton swabs, foam sponges, and suppositories. The IRM can be removed by withdrawing the device from contact with the mucosal tissue, if desired.

In some embodiments the device can be used in combination with the aqueous gel formulation. In one embodiment, a gel containing an IRM compound can be placed into the concave region of a cervical cap, which is then place directly over the cervix. In another embodiment, a cotton or foam sponge can be used in combination with an aqueous gel of the present invention.

In some embodiments, an applicator may be used to place 25 the device and/or gel in the proper location on the mucosal tissue. Examples of such applicators include, for example, paperboard or plastic tube applicators commonly used for inserting tampons or suppositories. A preferred applicator is a barrel type applicator, which may be prefilled or supplied in a 30 kit together with a container of gel and filled by the patient.

EXAMPLES

The following examples have been selected merely to further illustrate features, advantages, and other details of the invention. It is to be expressly understood, however, that while the examples serve this purpose, the particular materials and amounts used as well as other conditions and details are not to be construed in a matter that would unduly limit the scope of this invention.

The IRMs used to prepare the gels in the following examples are shown in Table 1.

TABLE 1

IRM	Chemical Name	Reference
IRM1	4-(4-amino-2-propyl-1H-imidazo[4,5-c]quinolin-1-yl)-N-propylbutyramide	International Publication No. WO2005/094531 Example 2
IRM2	N-[2-(4-amino-7-benzyloxy-2-ethoxymethyl-1H-imidazo[4,5-c]quinolin-1-yl)-1,1-dimethylethyl]acetamide	International Publication No. WO2005/020999 Example 142
IRM3	3-(4-amino-2-propyl-1H-imidazo[4,5-c]quinolin-1-yl)propionamide hydrochloride	International Publication No. WO2005/094531 Example 18
IRM4	Nylc-(4-amino-2-ethoxymethyl-1H- imidazo[4,5-c]quinolin-1-yl)ethyl]-N'- isopropylurea	U.S. Pat. No. 6,541,485#
IRM5	N-[4-(4-amino-2-buytl-1H-imidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide	U.S. Pat. No. 6,331,539 Example 6
IRM6	N-{4-[4-amino-2-(2-methoxyethyl)-1H-imidazo[4,5-c]quinolin-1-yl]butyl}methanesulfonamide	U.S. Pat. No. 6,331,539 Example 111
IRM7	1-(2-methylpropyl)-1H-imidazo[4,5-c]quinolin-4-amine (imiquimod)	U.S. Pat. No. 4,689,338 Example 99

62

TABLE 1-continued

IRM	Chemical Name	Reference
IRM8	2-propylthiazolo[4,5-c]quinolin-4-amine hydrochloride	U.S. Pat. No. 6,110,929 Example 14

*IRM4 is not specifically exemplified but can be readily prepared using the synthetic methods disclosed in the cited reference.

Test Method

In the examples below the serum and intravaginal cytokine data were obtained using the following general test method.

Rats were acclimated to collars (Lomir Biomedical, Malone, N.Y.) around the neck on two consecutive days prior to actual dosing. Rats were collared to prevent ingestion of the drug. Animals were then dosed intravaginally with 50 μL of gel. Single dosed rats received one intravaginal dose with samples collected at various times following dosing. Multiple dosed rats were dosed as described in the examples below with samples collected at various times following the final dose. Blood was collected by cardiac puncture. Blood was allowed to clot briefly at room temperature and serum was separated from the clot via centrifugation. The serum was stored at -20° C. until it was analyzed for cytokine concentrations

Following blood collection, the rats were euthanized and their vaginal tract, including the cervix, was then removed and the tissue was weighed, placed in a sealed 1.8 mL cryovial and flash frozen in liquid nitrogen. The frozen vaginal tissue sample was then suspended in 1.0 mL of RPMI medium (Celox, St. Paul, Minn.) containing 10% fetal bovine serum (Atlas, Fort Collins, Colo.), 2 mM L-glutamine, penicillin/streptomycin and 2-mercaptoethanol (RPMI complete) combined with a protease inhibitor cocktail set III (Calbiochem, San Diego, Calif.). The tissue was homogenized using a Tissue Tearor (Biospec Products, Bartlesville, Okla.) for approximately one minute. The tissue suspension was then centrifuged at 2000 rpm for 10 minutes under refrigeration to pellet the debris, and the supernatant collected and stored at –20° C. until analyzed for cytokine concentrations.

ELISA kits for rat tumor necrosis factor-alpha (TNF) were purchased from BD PharMingen (San Diego, Calif.) and the rat monocyte chemoattractant protein-1 (MCP-1) ELISA kits were purchased from BioSource Intl. (Camarillo, Calif.). Both kits were performed according to manufacturer's specifications. Results for both TNF and MCP-1 are expressed in pg/mL and are normalized per 200 mg of tissue. The sensitivity of the TNF ELISA, based on the lowest value used to form the standard curve, is 32 pg/mL and for the MCP-1 ELISA it is 12 pg/mL.

Examples 1 and 2

The gels shown in Table 2 below were prepared using the following method.

Step 1: The parabens were dissolved in the propylene glycol. Step 2: The IRM was combined with the aqueous ethanesulfonic acid and a portion of the water.

Step 3: The solution from step 1 was combined with the mixture from step 2.

Step 4: Edetate disodium was dissolved in water. The carbomer was added to the solution and stirred until well hydrated.

Step 5: The dispersion from step 4 was combined with the mixture from step 3.

10

63

Step 6: 20% tromethamine was added to adjust the pH. Step 7: Sufficient water was added to adjust the final weight and the gel was mixed well.

TABLE 2

	Gels (% w/w)
Ingredient	Ex 1 IRM1	Ex 2 IRM2
IRM	0.1	0.1
0.25 N ethanesulfonic acid	0.594	0.452
Carbomer 974P	2.1	2.1
Propylene glycol	15	15
Methylparaben	0.15	0.15
Propylparaben	0.03	0.03
Edetate disodium	0.05	0.05
20% Tromethamine solution	1.5	1.5
Purified water	80.48	80.62
рH	3.95	4.07

Example 3

The gel shown in Table 3 below was prepared using the following method.

Step 1: The parabens were dissolved in the propylene glycol. ²⁵ Step 2: IRM3 was combined with a portion of the water.

Step 3: The solution from step 1 was combined with the mixture from step 2 and heated to 55° C. and ultrasonicated. Step 4: Edetate disodium was dissolved in water. The carbomer was added to the solution and stirred until well 30

hydrated.
Step 5: The dispersion from step 4 was combined with the

Step 6: 20% tromethamine was added to adjust the pH.

mixture from step 3.

Step 7: Sufficient water was added to adjust the final weight 35 and the gel was mixed well.

TABLE 3

Ingredient		(% w/w)	40
IRM 3		0.1	
Carbomer 974	4P	2.1	
Propylene gly	rcol	15	
Methylparabe	en	0.15	
Propylparabe	n	0.03	45
Edetate disod	ium	0.05	45
20% Trometh	amine solution	1.5	
Purified water	r	80.65	
pН		3.99	

The ability of the gels of Examples 1-3 to induce cytokines 50 was determined using the test method described above. The animals received an intravaginal dose once a day on day 0 and on day 3 for a total of 2 doses. The results are shown in Table 4 below where each value is the mean of 3 animals±SEM (standard error of the mean). 55

TABLE 4

Time (hours)		Cytokine Concentrations					
Post		TNF	(pg/mL)	MCP-1	(pg/mL)	-	
Dose	Gel	Serum	Tissue	Serum	Tissue		
2 2 2	Example 1 Example 2 Example 3	36 ± 18 84 ± 16 97 ± 6	356 ± 14 1736 ± 794 568 ± 458	136 ± 23 147 ± 33 114 ± 33	226 ± 35 588 ± 221 282 + 192	65	

64

TABLE 4-continued

	Time (hours)			Cytokine Co	ncentrations	3
	Post		TNF	(pg/mL)	MCP-	l (pg/mL)
	Dose	Gel	Serum	Tissue	Serum	Tissue
	4	Example 1	53 ± 10	273 ± 172	77 ± 28	501 ± 291
	4	Example 2	79 ± 6	1064 ± 290	15 ± 15	1839 ± 113
)	4	Example 3	49 ± 9	188 ± 48	161 ± 13	637 ± 252
	6	Example 1	44 ± 3	210 ± 19	161 ± 38	756 ± 205
	6	Example 2	73 ± 10	743 ± 211	260 ± 14	1857 ± 276
	6	Example 3	56 ± 13	105 ± 37	218 ± 63	444 ± 298
	4	¹ Vehicle	101 ± 32	94 ± 10	173 ± 20	176 ± 59

¹Vehicle (2.1% carbomer 974, 15% propylene glycol, 0.15% methylparaben, 0.03% propylparaben, 0.05% edetate sodium, 1.35% 20% tromethamine solution, and 81.32% water)

Examples 4-6

The gels in Table 5 below were prepared using the following general method.

Step 1: The parabens were dissolved in the propylene glycol. Step 2: IRM4 was dissolved in the aqueous ethanesulfonic acid.

5 Step 3: The solution from step 1 was combined with the solution from step 2.

Step 4: Edetate disodium was dissolved in water. The carbomer and xanthan gum, if used, were added to the solution and stirred until well hydrated.

³⁰ Step 5: The dispersion from step 4 was combined with the solution from step 3.

Step 6: 20% tromethamine was added to adjust the pH.

Step 7: Sufficient water was added to adjust the final weight and the gel was mixed well.

TABLE 5

	Gels (% w/w)		
Ingredient	Ex 4	Ex 5	Ex 6
IRM4	0.01	0.1	1
0.5 N ethanesulfonic acid	0.054	0.54	5.4
Carbomer 974P	1.7	1.7	2
Xanthan gum	0.0	0.0	0.56
Propylene glycol	15	15	30
Methylparaben	0.15	0.15	0.15
Propylparaben	0.03	0.03	0.03
Edetate disodium	0.05	0.05	0.05
20% Tromethamine solution	0.7	0.5	1.9
Purified water	82.31	81.93	58.91
pH	3.9	3.9	4.3

The ability of the gels of Examples 4-6 to induce cytokines following a single dose was determined using the test method described above. The results are shown in Table 6 below where each value is the mean of 5 animals±SEM.

TABLE 6

Time (hours)			Cytokine Co	ncentrations		
	Post		TNF ((pg/mL)	MCP-1	(pg/mL)
	Dose	Gel	Serum	Tissue	Serum	Tissue
	2	Example 4	16 ± 2	331 ± 24	96 ± 4	134 ± 57
	2	Example 5	19 ± 6	433 ± 64	91 ± 11	298 ± 104
	2	Example 6	45 ± 21	853 ± 150	90 ± 6	501 ± 111
	4	Example 4	11 ± 6	257 ± 9	115 ± 10	112 ± 41

45

50

Time (hours) Cytokine Concentrations Post TNF (pg/mL) MCP-1 (pg/mL) Tissue Tissue Dose Gel Serum Serum Example 5 30 ± 6 397 ± 32 123 ± 13 462 ± 159 Example 6 70 ± 32 700 ± 86 103 ± 9 866 ± 150 Example 4 13 ± 5 297 ± 11 142 ± 13 283 ± 84 10 337 ± 96 Example 5 21 ± 5 275 ± 21 146 ± 16

¹Vehicle (2% carbomer 974, 30% propylene glycol, 0.15% methylparaben, 0.03% propylparaben, 0.05% edetate sodium, 0.3% of 20% tromethamine solution, and 67.47% water)

 557 ± 232

 255 ± 15

 171 ± 23

 108 ± 16

641 ± 144

 14 ± 2

 37 ± 14

Example 6

1Vehicle

Examples 7 and 8

The gels shown in Table 7 were prepared using the following general method.

Step 1: IRM2 was combined with the aqueous ethanesulfonic acid and a portion of the water. The combination was mixed until the IRM was dissolved.

Step 2: The parabens were dissolved in the propylene glycol. Step 3: Edetate sodium was dissolved in water. The carbomer was added and the mixture was stirred until the carbomer was hydrated.

Step 4: The solution from step 2 was added to the solution from step 1 and the combination was mixed until uniform.

Step 5: The dispersion from step 3 was added to the solution from step 4 and the combination was mixed until a uniform, 30 smooth gel was obtained.

Step 6: Sufficient 20% tromethamine was added to adjust the pH to about 4.

Step 7: Sufficient water was added to adjust the final weight and the gel was mixed well until uniform.

TABLE 7

	Gels (% w/w)		
Ingredient	Ex 7	Ex 8	
IRM2	0.01	0.1	
Ethanesulfonic acid (0.5M + 5% extra)	0.0455	0.455	
Carbomer 974P	2.1	2.1	
Propylene glycol	15	15	
Methylparaben	0.15	0.15	
Propylparaben	0.03	0.03	
Edetate disodium	0.05	0.05	
20% Tromethamine solution	qs pH 4	qs pH 4	
Purified water	qs 100	qs 100	
pH	4.1	4.2	

Example 9

The gel shown in Table 8 was prepared using the following general method.

Step 1: IRM2 was combined with the aqueous ethanesulfonic acid and a portion of the water. The combination was mixed until the IRM was dissolved.

Step 2: The parabens were dissolved in the propylene glycol.
Step 3: Edetate sodium was dissolved in water. The carbomer 60 was added and the mixture was stirred until the carbomer was hydrated.

Step 4: The solution from step 2 was added to the solution from step 1 and the combination was mixed until uniform.

Step 5: The dispersion from step 3 was added to the solution 65 from step 4. The combination was mixed well resulting in a milky, fluid dispersion.

66

Step 6: Sufficient 20% tromethamine was added to adjust the pH to about 4 and the dispersion thickened and foamed. Step 7: Xanthan gum was mixed with water and then added to the dispersion from step 6. The mixture was heated at 50° C. with stirring for 4 hours. The gel was allowed to cool to ambient temperature overnight with stirring.

TABLE 8

0	Ingredient	(% w/w)
	IRM4	1
	Ethanesulfonic acid (0.5M + 5% extra)	4.565
	Carbomer 974P	2.1
	Xanthan gum	0.2
_	Propylene glycol	15
5	Methylparaben	0.15
	Propylparaben	0.03
	Edetate disodium	0.05
	20% Tromethamine solution	qs pH 4
	Purified water	qs 100
	pH	4.0
0	<u> </u>	

The ability of the gels of Examples 7-9 to induce cytokines following a single dose was determined using the test method described above. The gel of Example 9 was stirred prior to dosing to minimize air bubbles. The results are shown in Table 9 below where each value is the mean of 6 animals±SEM.

TABLE 9

Time (hours)		Cytokine Concentrations					
Post		TNF (1	og/mL)	MCP-1 (pg/mL)			
Dose	Gel	Serum	Tissue	Serum	Tissue		
0.5	Exam- ple 7	159 ± 49	315 ± 63	212 ± 66	34 ± 1		
0.5	Exam- ple 8	716 ± 341	288 ± 22	239 ± 57	59 ± 21		
0.5	Exam- ple 9	359 ± 220	375 ± 85	130 ± 33	39 ± 2		
1	Exam- ple 7	199 ± 76	343 ± 79	110 ± 39	41 ± 7		
1	Exam- ple 8	237 ± 123	340 ± 93	156 ± 65	34 ± 2		
1	Exam- ple 9	306 ± 160	681 ± 222	119 ± 40	74 ± 30		
4	Exam- ple 7	165 ± 50	915 ± 175	261 ± 64	476 ± 127		
4	Exam- ple 8	105 ± 10	1165 ± 250	247 ± 32	1098 ± 307		
4	Exam- ple 9	233 ± 144	1628 ± 202	254 ± 38	1217 ± 271		
8	Exam- ple 7	133 ± 18	1190 ± 368	279 ± 27	583 ± 67		
8	Exam- ple 8	166 ± 51	1029 ± 268	259 ± 36	923 ± 131		
8	Exam- ple 9	159 ± 44	1336 ± 149	325 ± 44	1895 ± 254		
4	¹ Vehi- cle	125 ± 0	642 ± 101	191 ± 39	88 ± 41		

 1 Vehicle (2.1% carbomer 974, 0.4% xanthan gum, 15% propylene glycol, 0.15% methylparaben, 0.03% propylparaben, 0.05% edetate sodium, 20% tromethamine solution qs to pH 4.0, and water qs to 100%)

Examples 10 and 11

The gels shown in Table 10 were prepared using the following general method.

Step 1: The IRM was combined with the aqueous ethanesulfonic acid and the combination was mixed until the IRM was dissolved.

20

25

67

Step 2: The parabens were dissolved in the propylene glycol. Step 3: Edetate sodium was dissolved in the bulk of the water. The carbomer was added and the mixture was stirred until the carbomer was hydrated.

Step 4: The solution from step 2 was added to the solution 5 from step 1 and the combination was mixed until uniform.

Step 5: The dispersion from step 3 was added in portions to the solution from step 4 and the combination was mixed well. Step 6: 20% tromethamine was added to adjust the pH to about 4.

Step 7: Sufficient water was added to adjust the final weight and the gel was mixed well until uniform.

TABLE 10

	Gels (%	Gels (% w/w)		
Ingredient	Ex 10	Ex 11		
IRM	0.05 IRM5	0.5 IRM6		
Ethanesulfonic acid (0.05 N)	2.76	0		
Ethanesulfonic acid (0.02 N)	0	6.8		
Carbomer 974P	3.3	3.5		
Propylene glycol	15	15		
Methylparaben	0.15	0.15		
Propylparaben	0.03	0.03		
Edetate disodium	0.05	0.05		
20% Tromethamine solution	3.2	4.5		
Purified water	qs 100	qs 100		
pH	*	4.4		

^{*} Not measured

The ability of the gels of Examples 10 and 11 to induce 30 cytokines following a single dose was determined using the test method described above except that the dose was $100~\mu L$ instead of 50 μL . The results are shown in Table 11 below where each value is the mean of 3 animals±SEM (standard error of the mean).

TABLE 11

Time			Cytokine Concentrations				
(hours)		TNF (pg/mL)_		MCP-1 (pg/mL)			
Post Dose	e Gel	Serum	Tissue	Serum	Tissue		
2 2 4 4 2	Example 10 Example 11 Example 10 Example 11 Untreated	0 ± 0 33 ± 33 0 ± 0 0 ± 0 0 ± 0	230 ± 23 101 ± 28 169 ± 52 214 ± 19 90 ± 17	83 ± 7 96 ± 7 123 ± 36 87 ± 6 77 ± 7	276 ± 27 31 ± 4 411 ± 241 197 ± 72 26 ± 2		

Example 12

The gel shown in Table 12 was prepared using the following general method.

Step 1: IRM7 was combined with the aqueous methanesulfonic acid and mixed. Water was added in portions until the 55 IRM was completely dissolved.

Step 2: The edetate sodium was dissolved in the bulk of the water.

Step 3: The hydroxypropyl cellulose was combined with propylene glycol (about two thirds of the amount used to achieve 60 the final weight percent) and the combination was mixed to form a slurry.

Step 4: The carbomer was slowly added to the solution from step 2. The mixture was stirred until the carbomer was fully hydrated

Step 5: The slurry from step 3 was added to the mixture from step 4 and mixed thoroughly.

68

Step 6: The parabens were dissolved in propylene glycol (about one third of the amount used to achieve the final weight percent).

Step 7: The solution from step 6 was added to the solution from step 1 and thoroughly mixed.

Step 8: The solution from step 7 was slowly added to the mixture from step 5 with mixing.

Step 9: 20% tromethamine was added to adjust the pH to 4.

TABLE 12

Ingredient	(% w/w)
IRM7	0.05
Methanesulfonic acid (0.15 M)	14.6
Carbomer 974P	3.5
¹ Hydroxypropyl cellulose	0.50
Propylene glycol	15
Methylparaben	0.15
Propylparaben	0.03
Edetate disodium	0.05
20% Tromethamine solution	qs pH 4
Purified water	gs 100
pH	4.0

¹KLUCEL HF

Examples 13-15

The gels in Table 13 below were prepared using the following general method.

Step 1: The parabens were dissolved in propylene glycol (about one third of the amount used to achieve the final weight percent).

Step 2: IRM8 and a small portion of the water were added to the solution from step 1. The mixture was stirred until the IRM was completely dissolved.

Step 3: The edetate sodium was dissolved in the bulk of the water.

Step 4: The hydroxypropyl cellulose was slowly added with stirring to propylene glycol (about two thirds of the amount used to achieve the final weight percent).

Step 5: The mixture from step 4 was added to the solution from step 3.

Step 6: The carbomer was slowly added with stirring to the mixture from step 5. Stirring was continued until the carbomer was fully hydrated.

Step 7: About half of the 20% tromethamine solution was slowly added with stirring to the mixture from step 6.

Step 8: The solution from step 2 was slowly added with stirring to the mixture from step 7.

Step 9: The remainder of the 20% tromethamine solution was slowly added with stirring to the mixture from step 8. Stirring was continued until a uniform gel was obtained.

TABLE 13

	Gels (% w/w)			
Ingredient	Ex 13	Ex 14	Ex 15	
IRM8	0.0574	0.574	1.148	
Carbomer 974P	2.00	3.50	3.50	
Hydroxypropyl cellulose (HF grade)	0.50	0.50	0.50	
Propylene glycol	15.0	15.0	15.0	
Methylparaben	0.15	0.15	0.15	
Propylparaben	0.03	0.03	0.03	
Edetate disodium	0.05	0.05	0.05	
20% Tromethamine solution	0.94	3.47	5.00	
Purified water	gs 100	as 100	as 100	

The gel shown in Table 14 below was prepared using the following general method of Examples 13-15 except that all of the 20% tromethamine solution was added in step 7.

TABLE 14

Ingredient	(% w/w)	
IRM8	0.00574	1
Carbomer 974P	2.0	
Hydroxypropyl cellulose (HF grade)	0.5	
Propylene glycol	15.0	
Methylparaben	0.15	
Propylparaben	0.03	
Edetate disodium	0.05	1
20% Tromethamine solution	0.94	
Purified water	qs 100	
pH	4.0	

The ability of the gels of Examples 13-16 to induce cytokines following a single dose was determined using the test method described above except that the dose was 100 μ L instead of 50 μ L. The results are shown in Table 15 below where each value is the mean of 6 animals±SEM (standard error of the mean).

TABLE 15

Time			Cytokine	Concentration	ons	_	
(hours)		TNF	(pg/mL)	MCP-	1 (pg/mL)	30	
Post Dos	e Gel	Serum	Tissue	Serum	Tissue		
2	Example 16	2 ± 1	214 ± 29	83 ± 12	315 ± 122		
2	Example 13	0 ± 0	285 ± 52	115 ± 25	609 ± 111		
2	Example 14	2 ± 1	328 ± 18	98 ± 13	895 ± 132	3.5	
2	Example 15	3 ± 1	428 ± 27	95 ± 21	1202 ± 72		
2	¹ Vehicle	7 ± 5	159 ± 18	94 ± 16	47 ± 7		
4	Example 16	0 ± 0	234 ± 34	118 ± 21	727 ± 172		
4	Example 13	5 ± 3	196 ± 26	121 ± 9	1027 ± 81		
4	Example 14	2 ± 1	246 ± 32	166 ± 33	1422 ± 120		
4	Example 15	0 ± 0	246 ± 25	175 ± 40	1257 ± 224	40	
4	¹ Vehicle	0 ± 0	155 ± 25	117 ± 15	30 ± 3	40	
6	Example 16	0 ± 0	110 ± 10	160 ± 16	457 ± 88		
6	Example 13	2 ± 2	151 ± 19	137 ± 34	574 ± 71		
6	Example 14	1 ± 0	191 ± 37	188 ± 43	1121 ± 213		
6	Example 15	3 ± 3	177 ± 24	221 ± 27	1183 ± 139		
6	¹ Vehicle	8 ± 5	117 ± 26	148 ± 16	28 ± 4	44	

 1 Vehicle (2.00% carbomer 974, 0.50% hydroxypropyl cellulose, 15.0% propylene glycol, 0.15% methylparaben, 0.03% propylparaben, 0.05% edetate sodium, 0.94% 20% tromethamine solution, and water qs to 100%)

The complete disclosures of the patents, patent documents, and publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not intended to be unduly limited by the illustrative embodiments and examples set forth herein and that such examples and embodiments are presented by way of example only with the scope of the invention intended to be limited only by the claims set forth herein as follows.

What is claimed is:

1. An aqueous gel comprising:

an immune response modifier (IRM) other than 1-(2-methylpropyl)-1H-imidazo[4,5-c][1,5]naphthyridin-4-amine, or a salt thereof, an immune response modifier 65 (IRM), other than 1-(2-methylpropyl)-1H-imidazo[4,5-c][1,5]naphthyridin-4-amine, or a salt thereof, and

70

wherein the said IRM is selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoimidazopyridine amines, cycloalkylimidazopyridine amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines; oxazoloquinoline amines; thiazoloquinoline amines; oxazolopyridine amines; thiazolopyridine amines; oxazolonaphthyridine amines; thiazolonaphthyridine amines; pyrazolopyridine amines; pyrazoloquinoline amines; tetrahydropyrazoloquinoline amines; pyrazolonaphthyridine amines; tetrahydropyrazolonaphthyridine amines; 1H-imidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines, salts thereof, and combinations thereof;

a pharmaceutically acceptable acid;

water-miscible cosolvent; and

a thickener system comprising a negatively charged thickener:

wherein the aqueous gel has a viscosity of 1000 cps to 50,000 cps at 25° C.; and

wherein the aqueous gel does not contain oil.

2. An aqueous gel prepared by a method comprising combining components comprising:

water;

an immune response modifier (IRM) other than 1-(2-methylpropyl)-1H-imidazo[4,5-c][1,5]naphthyridin-4amine, or a salt thereof, an immune response modifier (IRM), other than 1-(2-methylpropyl)-1H-imidazo[4,5c][1,5]naphthyridin-4-amine, or a salt thereof, and wherein the said IRM is selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinolines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines; oxazoloquinoline amines; thiazoloquinoline amines; oxazolopyridine amines; thiazolopyridine amines; oxazolonaphthyridine amines; thiazolonaphthyridine amines; pyrazolopyridine amines; pyrazoloquinoline amines; tetrahydropyrazoloquinoline amines; pyrazolonaphthyridine amines; tetrahydropyrazolonaphthyridine amines; 1H-imidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines, salts thereof, and combinations thereof;

a water-miscible cosolvent; and

a thickener system comprising a negatively charged thickener:

wherein the aqueous gel has a viscosity of 1000 cps to 50,000 cps at 25° C.; and

wherein the aqueous gel does not contain oil.

- 3. The aqueous gel of claim 1 claim wherein the IRM in its free base form has an intrinsic aqueous solubility of less than $500~\mu g/mL$ at 25° C.
- **4**. The aqueous gel of claim **1** wherein the pharmaceutically acceptable acid is present in a stoichiometric amount relative to the IRM.
- 5. The aqueous gel of claim 1 wherein the IRM is provided as a salt.
- **6**. The aqueous gel of claim **1** wherein the IRM is an imidazoquinoline amine or a salt thereof.
- 7. The aqueous gel of claim 1 wherein the water-miscible cosolvent is present in an amount of from 10 wt-% to 90 wt-%, based on the total weight of the aqueous gel.
- 8. The aqueous gel of claim 1 wherein the water-miscible cosolvent is selected from the group consisting of monopropylene glycol, dipropylene glycol, hexylene glycol, butylene

glycol, glycerin, polyethylene glycol, diethylene glycol monoethyl ether, and combinations thereof.

- 9. The aqueous gel of claim 1 wherein the thickener system further comprises a non-ionic thickener.
- 10. The aqueous gel of claim 1 wherein the thickener is selected from the group consisting of hydroxyethyl cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, a cellulose ether, a polysaccharide gum, an acrylic acid polymer, carboxylic acid, carboxylate groups, and/or combinations thereof
- 11. The aqueous gel of claim 1 wherein the thickener system is present in an amount of from 0.1 wt-% to 7 wt-%, based on the total weight of the aqueous gel.
- 12. The aqueous gel of claim 1 further comprising a pharmaceutically acceptable pH adjusting agent.
- 13. The aqueous gel of claim 1 further comprising a pharmaceutically acceptable buffer.

72

- 14. The aqueous gel of claim 1 having a pH of 2 to 5.
- **15**. The aqueous gel of claim **1** further comprising a preservative
- 16. The aqueous gel of claim 1 further comprising a chelating agent.
- 17. A method of delivering an IRM to mucosal tissue of a subject, the method comprising applying the aqueous gel of claim 1 to the mucosal tissue.
- 18. The method of claim 17 wherein the mucosal tissue is associated with a condition selected from the group consisting of a cervical dysplasia, a papilloma virus infection of the cervix, a low-grade squamous intraepithelial lesion, a high-grade squamous intraepithelial lesion, atypical squamous cells of undetermined significance, a cervical intraepithelial neoplasia, an atopic allergic response, allergic rhinitis, a neoplastic lesion, and a premalignant lesion.

* * * * *